The effect of halogen substituents (X = Br, Cl, and F) on the crystal packing and intra- and intermolecular interactions in four adamantane-thiourea hybrid derivatives is investigated using different theoretical tools. The bromo and chloro derivatives exhibit 3D isostructurality as evident from lattice parameters, molecular conformation, and crystal packing. The density functional theory study suggests that the molecular conformation of the parent (unsubstituted) and fluoro derivatives exhibits a stable low energy anti-syn conformation. In contrast, bromo and chloro derivatives adopt stable and relatively high energy minima on their potential energy surfaces. Hirshfeld surface analysis reveals the effect of halogen substituents on the intermolecular contacts. The halogen atoms mainly reduce the contribution of H···H contacts toward crystal packing. PIXEL energy analysis indicates the strong dimer formed by N-H···S hydrogen bonds in all four structures. It also revealed that a vast number of H···H contacts observed in different dimers of these structures either presented along with other conventional interactions or solely stabilize the dimeric topology. The topological parameters for intermolecular interactions in these structures suggest an intermediate bonding character between shared and closed-shell interactions for N-H···S hydrogen bonds in the parent and chloro derivatives. In contrast, the N-H···S hydrogen bond in other structures is of a closed-shell interaction. Among four derivatives, the fluoro derivative is weakly packed in the solid state based on the PIXEL method's lattice energy calculation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905817PMC
http://dx.doi.org/10.1021/acsomega.0c05793DOI Listing

Publication Analysis

Top Keywords

halogen substituents
12
crystal packing
12
chloro derivatives
12
n-h···s hydrogen
12
intermolecular interactions
8
bromo chloro
8
molecular conformation
8
h···h contacts
8
hydrogen bonds
8
derivatives
7

Similar Publications

This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.

View Article and Find Full Text PDF

Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.

View Article and Find Full Text PDF

Organophosphorus compounds are highly toxic irreversible inhibitors of cholinesterases, causing the disruption of cholinergic functions. Treatment of poisoning includes causal antidotes (oximes) used as reactivators of inhibited cholinesterases, such as pralidoxime. In this work, new halogenated oxime reactivators derived from pralidoxime were developed.

View Article and Find Full Text PDF

We have investigated the base-induced long-range halogen dance reactions of 4,5-dibromo- or 4-bromo-5-iodothiazoles bearing sulfur-containing aromatic heterocycles at the C2-position. We have found that the reaction occurs in bithiazole regioisomers or (thiophenyl)thiazole derivatives, in which the C-5 halo group on the thiazole halogen donor regioselectively migrates to a halogen acceptor ring after treatment with lithium bis(trimethylsilyl)amide. The substrate with a thiophen-2-yl substituent required highly basic P4-t-Bu to induce the halogen dance reaction.

View Article and Find Full Text PDF

Exploring the properties of new super-chalcogens based on multiple electron counting rules: a combined DFT and study on [M(BCX)] dianion clusters.

Phys Chem Chem Phys

December 2024

College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China.

The theoretical exploration of the super-chalcogen properties of multi-charged sandwich structures whose geometry simultaneously satisfyies the octet rule and Hückel's 4+2 rule is reported here a case study of dianion clusters [M(BCX)] (M = Be, Mg or Ca; X = H, F or Cl). The properties of these dianion clusters [M(BCX)] are close to or even superior to those of traditional clusters based on separate electron-counting rules, , the octet rule and Hückel's 4+2 rule. At the theoretical level of combined and DFT methods, these clusters, including halogen-substituents (F, Cl) are super-chalcogens due to their high first vertical electron detachment energy (FVDE), of which the largest value is 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!