Deep Eutectic Solvents: Promising Co-solvents to Improve the Extraction Kinetics of CyMe-BTBP.

ACS Omega

Department of Energy - Nuclear Engineering Division, Politecnico di Milano, P.zza L. da Vinci 32, I-20133 Milano, Italy.

Published: February 2021

In this communication, we report on the use of deep eutectic solvents (DESs) for processing nuclear waste, with a view to selectively recovering minor actinides (MA) from highly active raffinate solutions. DESs are an interesting new class of green and eco-sustainable solvents. Herein, a representative family of DES was tested as a co-solvent for MA/lanthanides partitioning based on Selective ActiNide EXtraction (SANEX)-like hydrometallurgical processes. The reference system exploits the CyMe-BTBP lipophilic extractant for selective MA recovery, but the slow kinetics is the main limitation toward the industrial implementation. A selection of hydrophilic DESs has been proposed as a phase transfer catalyst and tested to improve the process performances. In this work, the radiochemical stability and the extraction behavior of these DESs have been ascertained. Moreover, a preliminary optimization of system composition has been achieved. This study underlines a catalytic effect of DES that can be proficiently exploited to enhance CyMe-BTBP extraction and selectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906495PMC
http://dx.doi.org/10.1021/acsomega.0c05109DOI Listing

Publication Analysis

Top Keywords

deep eutectic
8
eutectic solvents
8
solvents promising
4
promising co-solvents
4
co-solvents improve
4
extraction
4
improve extraction
4
extraction kinetics
4
kinetics cyme-btbp
4
cyme-btbp communication
4

Similar Publications

Influence of deep-eutectic and organic solvents on the recovery, molecular mass, and functional properties of dextran: Application using dextran film.

Int J Biol Macromol

December 2024

Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India. Electronic address:

The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages.

View Article and Find Full Text PDF

Effective monitoring of veterinary drug residues in food is essential for legislation compliance and food safety, yet remains challenging due to low concentrations and complex matrices. This study introduced a miniaturized 96-well electromembrane extraction (EME) technique for pre-concentration and isolation 80 prohibited/restricted veterinary drugs from honey samples. Three liquid membranes were developed and characterized: V1 ("V" for veterinary), a mixture of 2-undecanone and 0.

View Article and Find Full Text PDF

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.

View Article and Find Full Text PDF

Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!