Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts. However, it has been described that some pathogens are able to evade from these DNA structures by releasing DNase as an escape mechanism. As different NETs patterns have been identified in PMNs cultures challenged with different isolates of , the general objective of this study was to identify if different patterns of NETs released by human PMNs challenged with Pb18 (virulent) and Pb265 (avirulent) isolates would be correlated with fungal ability to produce a DNase-like protein. To this end, PMNs from healthy subjects were isolated and challenged with both fungal isolates. The production, release, and conformation of NETs in response to the fungi were evaluated by Confocal Microscopy, Scanning Microscopy, and NETs Quantification. The identification of fungal DNase production was assessed by DNase TEST Agar, and the relative gene expression for hypothetical proteins was investigated by RT-qPCR, whose genes had been identified in the fungal genome in the GenBank (PADG_11161 and PADG_08285). It was possible to verify the NETs release by PMNs, showing different NETs formation when in contact with different isolates of the fungus. The Pb18 isolate induced the release of looser, larger, and more looking like degraded NETs compared to the Pb265 isolate, which induced the release of denser and more compact NETs. DNase TEST Agar identified the production of a DNase-like protein, showing that only Pb18 showed the capacity to degrade DNA in these plates. Besides that, we were able to identify that both PADG_08528 and PADG_11161 genes were more expressed during interaction with neutrophil by the virulent isolate, being PADG_08528 highly expressed in these cultures, demonstrating that this gene could have a greater contribution to the production of the protein. Thus, we identified that the virulent isolate is inducing more scattered and loose NETs, probably by releasing a DNase-like protein. This factor could be an important escape mechanism used by the fungus to escape the NETs action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902888 | PMC |
http://dx.doi.org/10.3389/fcimb.2020.592022 | DOI Listing |
Front Cell Infect Microbiol
June 2021
Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.
Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts.
View Article and Find Full Text PDF3 Biotech
December 2020
Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India.
Antiviral proteins (AVPs) from plants possess multiple activities, such as -glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The -glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus.
View Article and Find Full Text PDFInt J Biol Macromol
July 2018
Centre for Chemistry and Biotechnology, School of Life and Environment Sciences, Deakin University, Waurn Ponds, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia; Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia. Electronic address:
Balsamin, a type I ribosome-inactivating protein (RIP), has been shown to inhibit HIV-1 replication at the translation step. Our recent studies have shown that balsamin also possess anti-tumor, antibacterial and DNase-like activity, however, the amount of natural balsamin in Momordica balsamina seeds is limited and preclinical studies require large quantities of pure, bioactive balsamin. Therefore, in this study, we cloned the balsamin gene, expressed it in E.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2017
Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, Henan, China.
Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T.
View Article and Find Full Text PDFPLoS Pathog
February 2017
Institute of Hygiene, University of Münster, Münster, Germany.
Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!