A metal-complex-modified graphitic carbon nitride (g-CN) bulk heterostructure is presented here as a promising alternative to high-cost noble metals as artificial photocatalysts. Theoretical and experimental studies of the spectral and physicochemical properties of three structurally similar molecules , , and confirm that the Pt(II) acetylide group effectively expands the electron delocalization and adjusts the molecular orbital levels to form a relatively narrow bandgap. Using these molecules, the donor-acceptor assemblies @, @, and @ are formed with g-CN. Among these assemblies, the Pt(II) acetylide-based composite materials @ and @ with bulk heterojunction morphologies and extremely low Pt weight ratios of 0.19% and 0.24%, respectively, exhibit the fastest charge transfer and best light-harvesting efficiencies. Among the tested assemblies, 10 mg @ without any Pt metal additives exhibits a significantly improved photocatalytic H generation rate of 1.38 µmol h under simulated sunlight irradiation (AM1.5G, filter), which is sixfold higher than that of the pristine g-CN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887596PMC
http://dx.doi.org/10.1002/advs.202002465DOI Listing

Publication Analysis

Top Keywords

solar-driven hydrogen
4
hydrogen generation
4
generation catalyzed
4
g-cn
4
catalyzed g-cn
4
g-cn polyplatinaynes
4
polyplatinaynes efficient
4
efficient electron
4
electron donor
4
donor low
4

Similar Publications

A scalable solar-driven photocatalytic system for separated H and O production from water.

Nat Commun

January 2025

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.

Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.

View Article and Find Full Text PDF

Functionalized UiO-66 induces shallow electron traps in heterojunctions with InN for enhanced photocathodic water splitting.

J Colloid Interface Sci

January 2025

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 China. Electronic address:

Indium nitride (InN) exhibited significant potential as a photoelectrode material for photoelectrochemical (PEC) water splitting, attributed to its superior light absorption, high electron mobility, and direct bandgap. However, its practical application was constrained by rapid carrier recombination occurring within the bulk and at the surface. To address these limitations, researchers developed InN/UiO-66 heterojunction photoelectrodes, which markedly enhanced PEC water splitting for hydrogen production.

View Article and Find Full Text PDF

Ru@MnO core@shell nanowires as a bifunctional electrocatalyst for efficient solar-driven seawater splitting.

Chem Commun (Camb)

January 2025

Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Seawater electrolysis technology for hydrogen production has attracted worldwide attention due to the abundant seawater resources. Herein, we proposed core-shell Ru@MnO nanowires (NWs) with α/β-MnO NWs as the core and amorphous Ru as the shell, in which the Ru@α-MnO NWs exhibited lower overpotential and better stability. More importantly, they can operate stably as a bifunctional catalyst for more than 250 h and maintain excellent catalytic performance when driven by solar energy.

View Article and Find Full Text PDF

Liquid Metal Nanobiohybrids for High-Performance Solar-Driven Methanogenesis via Multi-Interface Engineering.

Angew Chem Int Ed Engl

January 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.

Nanobiohybrids for solar-driven methanogenesis present a promising solution to the global energy crisis. However, conventional semiconductor-based nanobiohybrids face challenges such as limited tunability and poor biocompatibility, leading to undesirable spontaneous electron and proton transfer that compromise their structural stability and CH selectivity. Herein, we introduced eutectic gallium-indium alloys (EGaIn), featuring a self-limiting surface oxide layer surrounding the liquid metal core after sonication, integrated with Methanosarcina barkeri (M.

View Article and Find Full Text PDF

The development of efficient photocatalysts inspired by natural photosynthesis has drawn considerable interest for sustainable hydrogen (H) production. Among the various strategies for enhancing H evolution, constructing step-scheme (S-scheme) heterojunctions has attracted extensive interest, thanks to their limited charge recombination and enhanced charge transport in comparison to the traditional photocatalytic systems. Herein, we report the engineering of a novel S-scheme heterojunction by integrating ultrathin ZnInS (ZIS) nanosheets with MOF-derived N-doped NiO porous microrods (ZIS/N-NiO) toward superior photocatalytic behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!