A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards an Insulin Resistant Adipose Model on a Chip. | LitMetric

Introduction: Adipose tissue and adipocytes are primary regulators of insulin sensitivity and energy homeostasis. Defects in insulin sensitivity of the adipocytes predispose the body to insulin resistance (IR) that could lead to diabetes. However, the mechanisms mediating adipocyte IR remain elusive, which emphasizes the need to develop experimental models that can validate the insulin signaling pathways and discover new mechanisms in the search for novel therapeutics. Currently adipose organ-chip devices show superior cell function over conventional cell culture. However, none of these models represent disease states. Only when these models can represent both healthy and disease states, they can be useful for developing therapeutics. Here, we establish an organ-on-chip model of insulin-resistant adipocytes, as well as characterization in terms of insulin signaling pathway and lipid metabolism.

Methods: We differentiated, maintained, and induced insulin resistance into primary adipocytes in a microfluidic organ-on-chip. We then characterized IR by looking at the insulin signaling pathway and lipid metabolism, and validated by studying a diabetic drug, rosiglitazone.

Results: We confirmed the presence of insulin resistance through reduction of Akt phosphorylation, Glut4 expression, Glut4 translocation and glucose uptake. We also confirmed defects of disrupted insulin signaling through reduction of lipid accumulation from fatty acid uptake and elevation of glycerol secretion. Testing with rosiglitazone showed a significant improvement in insulin sensitivity and fatty acid metabolism as suggested by previous reports.

Conclusions: The adipose-chip exhibited key characteristics of IR and can serve as model to study diabetes and facilitate discovery of novel therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878591PMC
http://dx.doi.org/10.1007/s12195-020-00636-xDOI Listing

Publication Analysis

Top Keywords

insulin signaling
16
insulin sensitivity
12
insulin resistance
12
insulin
11
novel therapeutics
8
models represent
8
disease states
8
signaling pathway
8
pathway lipid
8
fatty acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!