Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults in the western world. One of the treatments offered for CLL is immunotherapy. These treatments activate various cellular and biochemical mechanisms, using the complement system. Recently it was shown that the complement system in CLL patients is persistently activated at a low level through the classical pathway (CP). The mechanism of chronic CP activation involves the formation of IgG-hexamers (IgG-aggregates). According to recent studies, formation of ordered IgG-hexamers occurs on cell surfaces specific interactions between Fc regions of the IgG monomers, which occur after antigen binding. The present study investigated the formation of IgG-hexamers in CLL patients and normal (non-malignant) controls (NC), their ability to activate complement, their incidence as cell-free and cell-bound forms and the identity of the antigen causing their formation. Sera from 30 patients and 12 NC were used for separation of IgG- aggregates. The obtained IgG- aggregates were measured and used for assessment of CP activation. For evaluation of the presence of IgG- aggregates on blood cells, whole blood samples were stained and assessed by flow cytometry. Serum levels of IgG- aggregates were higher in CLL and they activated the complement system to a higher extent than in NC. Alpha 2 macroglobulin (A2M) was identified as the antigen causing the hexamerization/aggregation of IgG, and was found to be part of the hexamer structure by mass spectrometry, Western blot and flow cytometry analysis. The presence of A2M-IgG-hexamers on B-cells suggests that it may be formed on B cells surface and then be detached to become cell-free. Alternatively, it may form in the plasma and then attach to the cell surface. The exact time course of A2M-IgG-hexamers formation in CLL should be further studied. The results in this study may be useful for improvement of current immunotherapy regimens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905172 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.603569 | DOI Listing |
Front Immunol
January 2025
Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, Ulm, Germany.
Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).
View Article and Find Full Text PDFFront Commun (Lausanne)
September 2024
Office of Science, Center for Tobacco Products, Silver Spring, MD, United States.
Introduction: On January 2, 2020, the FDA announced a policy focused in part on prioritizing enforcement of flavored (other than tobacco- or menthol-flavored) cartridge-based electronic nicotine delivery systems (ENDS) without premarket authorization.
Methods: We used a query to identify Reddit conversations relevant to the policy from January 2 to May 6, 2020. Our sample included 576 posts (46 posts and 530 accompanying comments).
Nat Biotechnol
January 2025
Department of Biomedicine, University of Basel, Basel, Switzerland.
Understanding a small molecule's mode of action (MoA) is essential to guide the selection, optimization and clinical development of lead compounds. In this study, we used high-throughput non-targeted metabolomics to profile changes in 2,269 putative metabolites induced by 1,520 drugs in A549 lung cancer cells. Although only 26% of the drugs inhibited cell growth, 86% caused intracellular metabolic changes, which were largely conserved in two additional cancer cell lines.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Programa de Pós-Graduação Em Saneamento, Meio Ambiente E Recursos Hídricos, Departamento de Engenharia Sanitária E Ambiental, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
Wastewater treatment plants (WWTPs) currently face major challenges toward the removal of microcontaminants and/or microbial matrices and consequently play an important role in the potential dissemination of biological resistance in freshwater. The ultraviolet (UV) system is a tertiary treatment strategy increasingly applied worldwide, although many studies have shown that disinfected effluent can still contain antibiotic-resistant bacteria and resistance genes. Therefore, to better understand the effects of UV radiation doses on the removal of all resistance elements (antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes), the present study was designed using a pilot-scale photoreactor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!