The sustainable utilization of black soldier fly (BSF) for recycling organic waste into nutrient-rich biomass, such as high-quality protein additive, is gaining momentum, and its microbiota is thought to play important roles in these processes. Several studies have characterized the BSF gut microbiota in different substrates and locations; nonetheless, in-depth knowledge on community stability, consistency of member associations, pathogenic associations, and microbe-microbe and host-microbe interactions remains largely elusive. In this study, we characterized the bacterial and fungal communities of BSF larval gut across four untreated substrates (brewers' spent grain, kitchen food waste, poultry manure, and rabbit manure) using 16S and ITS2 amplicon sequencing. Results demonstrated that substrate impacted larval weight gain from 30 to 100% gain differences among diets and induced an important microbial shift in the gut of BSF larvae: fungal communities were highly substrate dependent with being the only prevalent genus across 96% of the samples; bacterial communities also varied across diets; nonetheless, we observed six conserved bacterial members in 99.9% of our samples, namely, , , , , , and . Among these, was highly correlated with other genera including and . Additionally, we showed that diets such as rabbit manure induced a dysbiosis with higher loads of the pathogenic bacteria . Together, this study provides the first comprehensive analysis of bacterial and fungal communities of BSF gut across untreated substrates and highlights conserved members, potential pathogens, and their interactions. This information will contribute to the establishment of safety measures for future processing of BSF larval meals and the creation of legislation to regulate their use in animal feeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907179PMC
http://dx.doi.org/10.3389/fmicb.2021.635881DOI Listing

Publication Analysis

Top Keywords

fungal communities
12
organic waste
8
gut microbiota
8
black soldier
8
soldier fly
8
bsf gut
8
bacterial fungal
8
communities bsf
8
bsf larval
8
gut untreated
8

Similar Publications

Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts.

View Article and Find Full Text PDF

The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN).

View Article and Find Full Text PDF

Salinization processes profoundly impact soil quality and health, altering physical structure, chemical composition, and biological activity, particularly concerning soil microbial populations. Microbial communities play a pivotal role in maintaining soil ecosystem multifunctionality (EMF). Understanding the response of microbial communities to salinity stress is crucial for sustainable soil management and enhancing ecosystem resilience in arid and semi-arid regions.

View Article and Find Full Text PDF

Variation and assembly mechanisms of skin and cave environmental fungal communities during hibernation periods.

Microbiol Spectr

January 2025

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.

Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.

View Article and Find Full Text PDF

Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential.

Front Cell Neurosci

January 2025

Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.

Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.

Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!