Fundamental aspects of outer membrane vesicle (OMV) biogenesis and the engineering of producer strains have been major research foci for many in recent years. The focus of this study was OMV production in a variety of strains including wild type (WT) (K12 and BW25113), mutants (from the Keio collection) and proprietary [BL21 and BL21 (DE3)] strains. The present study investigated the proteome and prospective mechanism that underpinned the key finding that the dominant protein present in K-12 WT OMVs was fimbrial protein monomer (FimA) (a polymerizable protein which is the key structural monomer from which Type 1 fimbriae are made). However, mutations in genes involved in fimbriae biosynthesis (Δ, , , and ) resulted in the packaging of flagella protein monomer (FliC) (the major structural protein of flagella) into OMVs instead of FimA. Other mutations (Δ, and Δ-a transcriptional regulator of fimbriation and flagella biosynthesis) lead to the packaging of both FimA and Flagellin into the OMVs. In the majority of instances shown within this research, the production of OMVs is considered in K-12 WT strains where structural appendages including fimbriae or flagella are temporally co-expressed throughout the growth curve as shown previously in the literature. The hypothesis, proposed and supported within the present paper, is that the vesicular packaging of the major FimA is reciprocally regulated with the major FliC in K-12 OMVs but this is abrogated in a range of mutated, non-WT strains. We also demonstrate, that a protein of interest (GFP) can be targeted to OMVs in an K-12 strain by protein fusion with FimA and that this causes normal packaging to be disrupted. The findings and underlying implications for host interactions and use in biotechnology are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907004PMC
http://dx.doi.org/10.3389/fmicb.2021.557455DOI Listing

Publication Analysis

Top Keywords

type fimbriae
8
fimbriae flagella
8
outer membrane
8
k-12 omvs
8
protein monomer
8
protein
7
strains
6
omvs
6
flagella
5
fima
5

Similar Publications

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF

The effect of consumption of cranberry on adherence to feline uroepithelial cells in a blind randomised cross-over trial in cats.

J Vet Res

December 2024

Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe) Laboratory, Site de St-Martin, CY Cergy Paris University, 95302 Cergy-Pontoise, France.

Introduction: is the most common uropathogen in humans, dogs and cats. Dietary consumption of cranberry () is known to be associated with a reduction in uropathogenic (UPEC) adhesion to human and canine urinary epithelial cell lines, but this has not been shown in cats.

Material And Methods: Six neutered domestic cats, one male and five females, were randomly fed three diets successively, one containing 0.

View Article and Find Full Text PDF

A critical step in infections is the attachment of many microorganisms to host cells using lectins that bind surface glycans, making lectins promising antimicrobial targets. Upon binding mannosylated glycans, FimH, the most studied lectin adhesin of type 1 fimbriae in , undergoes an allosteric transition from an inactive to an active conformation that can act as a catch-bond. Monoclonal antibodies that alter FimH glycan binding in various ways are available, but the mechanisms of these antibodies remain unclear.

View Article and Find Full Text PDF

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF
Article Synopsis
  • The human oral and nasal microbiota consists of around 770 cultivable bacterial species, with over 2,000 genome sequences available in the expanded Human Oral Microbiome Database (eHOMD).
  • Researchers created a Python tool called HOMDscrape to help retrieve and analyze data regarding bacterial motility from eHOMD.
  • The study focused on the evolutionary relationships of motile bacteria, specifically examining the type 9 secretion system (T9SS) and its role in bacterial motility, which may influence how these bacteria coexist in the human oral microbiota.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!