Adult hippocampal neurogenesis (AHN) has been widely confirmed in mammalian brains. A growing body of evidence points to the fact that AHN sustains hippocampal-dependent functions such as learning and memory. Impaired AHN has been reported in human brain hippocampus of Alzheimer's disease (AD) and is considered to contribute to defects in learning and memory. Neurofibrillary tangles (NFTs) and amyloid plaques are the two key neuropathological hallmarks of AD. NFTs are composed of abnormal tau proteins accumulating in many brain areas during the progression of the disease, including in the hippocampus. The physiological role of tau and impact of tau pathology on AHN is still poorly understood. Modifications in AHN have also been reported in some tau transgenic and tau-deleted mouse models. We present here a brief review of advances in the relationship between development of tau pathology and AHN in AD and what insights have been gained from studies in tau mouse models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902892 | PMC |
http://dx.doi.org/10.3389/fneur.2021.610330 | DOI Listing |
Inflammopharmacology
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Alzheimer's disease (AD) is a common neurodegenerative disorder worldwide and the using of magnetic resonance imaging (MRI) in the management of AD is increasing. The present study aims to summarize MRI in AD researches via bibliometric analysis and predict future research hotspots.
Methods: We searched for records related to MRI studies in AD patients from 2004 to 2023 in the Web of Science Core Collection (WoSCC) database.
Acta Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFNat Neurosci
January 2025
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.
View Article and Find Full Text PDFInsights Imaging
January 2025
Diagnostic and Interventional Radiology, University Hospital of Zurich, University Zurich, Zurich, Switzerland.
Objectives: To compare and correlate bone edema volume detected by 3D-short-tau-inversion-recovery (STIR) sequence to osseous decay detected by a T1-based sequence and conventional panoramic radiography (OPT).
Materials And Methods: Patients with clinical evidence of apical periodontitis were included retrospectively and received OPT as well as MRI of the viscerocranium including a 3D-STIR and a 3D-T1 gradient echo sequence. Bone edema was visualized using the 3D-STIR sequence and periapical hard tissue changes were evaluated using the 3D-T1 sequence.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!