The degradation behavior of eight benzodiazepines (BZPs): alprazolam, etizolam, diazepam, triazolam, nitrazepam (NZP), flunitrazepam (FNZ), bromazepam, and lorazepam, in artificial gastric juice was monitored by a LC/photodiode array detector (PDA) to estimate their pharmacokinetics in the stomach. For drugs that were degradable, such physicochemical parameters as reaction rate constant were measured to evaluate the effect of storage conditions on drug degradability, such as whether the degradation proceeds faster by increasing storage temperature, or whether the degradation reaction is reversible by adjusting pH. As a result, it was confirmed that although the eight BZPs degraded in artificial gastric juice, most of them could be restored when pH was increased, and the restoration rates differed depending on the pH and the type of BZP. As for NZP, an Arrhenius plot was drawn to obtain the physicochemical parameters, such as activation energy and activation entropy involved in the degradation reaction, and the reaction kinetics was discussed. In addition, two substances were confirmed as the degradation products of NZP in artificial gastric juice: one was a reversible degradation product (A) (intermediate) and the other was an irreversible degradation product (B) (final degradation product). The intermediate was identified as 2-amino-N-(2-benzoyl-4-nitrophenyl)-acetamide, and the final degradation product was 2-amino-5-nitrobenzophenone. Therefore, when detecting NZP in human stomach contents, such as during judicial dissection, it would be prudent to target NZP as well as the intermediate (A) and the final degradation product (B).

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c20-00836DOI Listing

Publication Analysis

Top Keywords

degradation product
20
artificial gastric
16
gastric juice
16
final degradation
12
degradation
10
degradation behavior
8
physicochemical parameters
8
degradation reaction
8
product intermediate
8
nzp
5

Similar Publications

Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.

View Article and Find Full Text PDF

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

Effect of anthocyanin rich black sugarcane on milk production and antioxidant capacity in lactating dairy cows.

Sci Rep

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.

This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.

View Article and Find Full Text PDF

How the tulip breaking virus creates striped tulips.

Commun Biol

January 2025

Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.

The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!