PI3Kαδ Inhibitor Combined With Radiation Enhances the Antitumor Immune Effect of Anti-PD1 in a Syngeneic Murine Triple-Negative Breast Cancer Model.

Int J Radiat Oncol Biol Phys

Department of Radiation Oncology, Seoul National University, School of Medicine, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea; Cancer Research Institute and Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea. Electronic address:

Published: July 2021

Purpose: The poor response of breast cancer to immune checkpoint blockade might result from low immunogenicity and the immune-suppressive tumor microenvironment. We hypothesized that in situ tumor vaccination via radiation therapy (RT) and suppression of immune tolerance via phosphoinositide 3-kinase δ (PI3Kδ) inhibition would enhance the efficacy of immune checkpoint blockade.

Methods And Materials: 4T1 murine breast cancer cells were grown in both immune-competent and -deficient BALB/c mice, and tumors were irradiated with 24 Gy in 3 fractions. A PD-1 blockade and a PI3Kαδ inhibitor were then administered every other day for 2 weeks. Fluorescence-activated cell sorting and immunohistochemistry served to monitor subsequent changes in immune cell repertoire.

Results: The triple combination of RT, PD-1 blockade, and PI3Kαδ inhibitor significantly delayed tumor growth. The immune-deficient syngeneic 4T1 murine tumor model failed to show this tumor growth delay. Use of RT and PI3Kαδ inhibitor increased the proportions of CD8 T cells; PI3Kαδ inhibitor led to a decrease in regulatory T cells and polymorphonuclear myeloid-derived suppressor cells. The triple combination resulted in a remarkable increase in cytotoxic CD8 T cells, suggesting a prominent immune-modulatory effect. The abscopal effect was most prominent in the triple-combination therapy group, and it correlated with splenic CD8 T cell accumulation.

Conclusions: These findings collectively indicate that combining RT, PI3Kαδ inhibitor, and PD-1 blockade could be a viable approach, helping to overcome the therapeutic resistance of immunologically cold tumors, such as breast cancer, with an immunosuppressive tumor microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2021.01.025DOI Listing

Publication Analysis

Top Keywords

pi3kαδ inhibitor
24
breast cancer
16
pd-1 blockade
12
immune checkpoint
8
tumor microenvironment
8
4t1 murine
8
blockade pi3kαδ
8
triple combination
8
tumor growth
8
cd8 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!