Background: Autologous tissue transplantation for urethral repair is often limited and causes donor site complications. Here, a cryopreserved rabbit skin epithelial cell sheet (SEC) combined with an acellular amniotic membrane (AM) was used to repair rabbit urethral defects.

Methods: Abdominal skin was collected from 4-week-old New Zealand rabbits, and primary epithelial cells were extracted and cultured to form a cell sheet. Fresh SEC-AMs were constructed and cryopreserved. A cryopreservation system including optimized medium, two-pump perfusion, a programmed freezer and liquid nitrogen storage was established. Cell viability, mechanical strength, electron microscopy, and histological staining were performed in vitro after 1 month. Next, the sheets were transplanted subcutaneously for 2 weeks, and the graft was used to repair the rabbit urethral defect. Urinary function was measured and samples were collected for histological staining after 1 month.

Results: We confirmed that cryopreservation damage of SECs was reduced by composition with acellular AMs in terms of high cell activity. The SEC mechanical strength was also enhanced by AMs, which was convenient for the operation. In in vivo experiments, we transplanted sheets into the groin area for two weeks and found that cryopreservation reduced inflammatory cell infiltration and significantly improved vascular density. In the urethral repair experiment, the near-normal passive urine flow rate, smooth mucosa of the gross specimen, intact epithelialization and abundant neovascularization were confirmed in the cryopreserved-SEC-AM group compared with the other groups.

Conclusions: Cryopreserved SEC-AMs demonstrated similar outcomes of rabbit urethral defect repair as fresh SEC-AMs, showing good clinical application prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.111926DOI Listing

Publication Analysis

Top Keywords

cell sheet
12
rabbit urethral
12
skin epithelial
8
epithelial cell
8
sheet combined
8
combined acellular
8
acellular amniotic
8
amniotic membrane
8
urethral repair
8
repair rabbit
8

Similar Publications

Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.

View Article and Find Full Text PDF

Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems.

Water Res

December 2024

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.

View Article and Find Full Text PDF

Superficial CD34+ fibroblastic tumor (SCD34FT) is a relatively recently described borderline mesenchymal neoplasm. Owing to a relative lack of specificity in clinical presentation, radiopathologic findings, and immunohistochemical staining, the diagnoses of SCD34FT can be challenging. In this study, we present a case of a 55-year-old woman with an indolent painless nodule on the right shin.

View Article and Find Full Text PDF

Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times.

View Article and Find Full Text PDF

Background: Robust methods are needed for preclinical evaluation of novel Alzheimer Disease (AD) therapies to accelerate drug discovery. Quantitative Gradient Recalled Echo (qGRE) MRI shows significant promise to provide insight into neurodegeneration in AD prior to atrophy development in humans, with qGRE R2t* metric (tissue-specific subcomponent of R2*) highlighting areas of low neuronal density (doi:10.3233/JAD-210503).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!