Pretomanid: A novel therapeutic paradigm for treatment of drug resistant tuberculosis.

Indian J Tuberc

Department of Pharmacy Practice, Deccan School of Pharmacy, Darussalam, Aghapura, Hyderabad 500001, Telangana, India.

Published: January 2021

Tuberculosis is currently an anticipated driver of pandemic diseases. It remains an imminent issue accounting for about 1.4 million deaths annually across the world. Since the evolution of human entity drug susceptible tuberculosis was managed through potent first line therapies. Unfortunately, the emergence of newer multitude strains refractory amongst available drugs in Drug resistant TB has led to an emergence MDR-TB and XDR-TB. Moreover, the increasing incidence of drug susceptible TB in developing countries paved way to development of new guidelines for treating various form of tuberculosis. Furthermore, newer regimens are warranted to combat resistance that preferably cause a reduction in mortality. Until now, various ongoing trials are being carried in order to potentially evaluate the suitable novel drug candidates, repurposed drugs and host directed therapies that will optimistically be safe, easy to tolerate, cost effective and non-toxic that will modify the prospects for treating drug resistant TB and latent TB. In context, the current scenario seems to impose a significant challenge on health care researchers in the field of drug discovery owing to complexities, prolong treatment duration, and is cumbersome. Pretomanid is a novel drug with potent bactericidal properties emerging a key advancement used in combination along with other drug therapies This review details the role of pretomanid in treating tuberculosis and the clinical trials in adultsd.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijtb.2020.09.005DOI Listing

Publication Analysis

Top Keywords

drug resistant
12
drug
9
pretomanid novel
8
drug susceptible
8
novel drug
8
tuberculosis
5
novel therapeutic
4
therapeutic paradigm
4
paradigm treatment
4
treatment drug
4

Similar Publications

The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases.

Discov Nano

January 2025

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.

Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Role of glycosylation in bacterial resistance to carbapenems.

World J Microbiol Biotechnol

January 2025

School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.

Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs.

View Article and Find Full Text PDF

Alpelisib is a phosphatidylinositol 3-kinase inhibitor approved by the US Food and Drug Administration for the treatment of hormone receptor-positive metastatic breast cancer with (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α) mutation. In recent years a number of adverse effects have been observed to be associated with this therapy, the most notable of which is hyperglycemia. A literature search was conducted to include case studies, case series, systematic reviews, and meta-analyses within the last 10 years that evaluated patients with mutated hormone receptor-positive, human epidermal growth factor receptor 2 negative metastatic breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!