A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prophage loci predictor for bacterial genomes. | LitMetric

Prophage loci predictor for bacterial genomes.

J Bioinform Comput Biol

Department of Computer Applications, Bharathiar University, Coimbatore, Tamil Nadu, India.

Published: April 2021

This paper proposes a new algorithm for prophage loci prediction in bacteria. Prophages are defined in Bioinformatics as viral nucleotide sequences that are found intermixed with host nucleotide sequences in bacteria. The proposed algorithm uses machine learning patterns and processing methodologies in order to provide a highly efficient system for loci prediction, thereby reducing the time-space complexity required unlike others of its class. In the training phase, a pattern database is constructed from raw nucleotide sequences of both bacteria and viruses obtained from a training set. In the prediction phase, the aforementioned database is used along with Particle Swarm Optimization (PSO) to predict the probable loci of prophages in a test set of bacterial nucleotide sequences. Testing this method on raw sequences consisting of both partial and complete nucleotide sequences of various bacteria has yielded good results in predicting the loci of prophages in them. This algorithm and connected processes compare favorably in terms of predictive performance with others of its class such as PhiSpy and ProphET, while outperforming others in terms of raw processing speed, suggesting that a data-centric approach can yield comparable results while using a fraction of the resources.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720020500493DOI Listing

Publication Analysis

Top Keywords

nucleotide sequences
20
sequences bacteria
12
prophage loci
8
loci prediction
8
loci prophages
8
sequences
6
nucleotide
5
loci predictor
4
predictor bacterial
4
bacterial genomes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!