A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. | LitMetric

It is widely recognized that future rainfall extremes will intensify. This expectation is tied to the Clausius-Clapeyron (CC) relation, stating that the maximum water vapour content in the atmosphere increases by 6-7% per degree warming. Scaling rates for the dependency of hourly precipitation extremes on near-surface (dew point) temperature derived from day-to-day variability have been found to exceed this relation (super-CC). However, both the applicability of this approach in a long-term climate change context, and the physical realism of super-CC rates have been questioned. Here, we analyse three different climate change experiments with a convection-permitting model over Western Europe: simple uniform-warming, 11-year pseudo-global warming and 11-year global climate model driven. The uniform-warming experiment results in consistent increases to the intensity of hourly rainfall extremes of approximately 11% per degree for moderate to high extremes. The other two, more realistic, experiments show smaller increases-usually at or below the CC rate-for moderate extremes, mostly resulting from significant decreases to rainfall occurrence. However, changes to the most extreme events are broadly consistent with 1.5-2 times the CC rate (10-14% per degree), as predicted from the present-day scaling rate for the highest percentiles. This result has important implications for climate adaptation. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934957PMC
http://dx.doi.org/10.1098/rsta.2019.0544DOI Listing

Publication Analysis

Top Keywords

rainfall extremes
12
hourly precipitation
8
three climate
8
experiments convection-permitting
8
convection-permitting model
8
climate change
8
extremes
6
climate
5
scaling responses
4
responses extreme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!