High-resolution X-ray diffraction data of triisobutylaluminum were collected, and unexpected structural features were observed, hinting toward yet unnoticed polarization effects. To approach these, a multipole refinement using the Hansen and Coppens method, followed by a topological analysis using Bader's quantum theory of atoms in molecules, was employed. The electron localization function based on density functional theory calculations supported the experimental findings. Thereby, unobserved electron shifts within the isobutyl group become detectable. It is shown that the impact of this electron shift is dependent mainly on whether the Bu substituent of the homoleptic triisobutylaluminum dimer [AlBu] () is connected by a directional (σ) or a multicenter (μ) bond to the metal. The effect found is assumed not only to be of paramount importance for organoaluminum compounds, widely used in synthesis and in the industrial value chain, but also to be present in organometallic chemistry in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03471 | DOI Listing |
Nat Commun
January 2025
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland.
This research investigates the mechanism of the cyanide-type umpolung reaction in benzoin condensation using topological analysis of ELF and catastrophe theory. The study achieves a comprehensive understanding of the evolution of chemical bonds and non-bonding electron density in the reaction of benzaldehyde and cyanide ions. The results reveal that the reaction proceeds through five transition state structures, with the formation of Lapworth's cyanohydrin being the rate-determining step.
View Article and Find Full Text PDFMolecules
January 2025
Centre for Surface Chemistry and Catalysis-Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium.
This work describes the synthesis of ordered 3D siloxane-silsesquioxane reticular materials with silicate D4R cubes (SiO), harvested from a sacrificial tetrabutylammonium cyclosilicate hydrate (TBA-CySH) precursor, interlinked with octyl and dicyclopentyl (Cp) hydrocarbon functionalities in a one-step synthesis with organodichlorosilanes. Advanced solid-state NMR spectroscopy allowed us to unravel the molecular order of the nodes and their interconnection by the silicone linkers. In the case of octyl-methyl silicone linkers, changing the silane-to-silicate ratio in the synthesis allowed for tuning the length of the linker between the nodes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan.
Osteocalcin is a useful biomarker for bone formation and bone-related diseases. KTM219 is an anti-osteocalcin C-terminal peptide antibody. The single-chain variable region (scFv) and antigen-binding fragment (Fab) of KTM219 are applicable to the Quenchbody (Q-body) immunoassay.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!