Multiple sclerosis (MS) is the most well-known autoimmune disorder of the central nervous system, and constitutes a major cause of disability, especially in young individuals. A wide array of pharmacological treatments is available, but they have often been proven to be ineffective in ameliorating disease symptomatology or slowing disease progress. As such, non-invasive and non-pharmacological techniques have been gaining more ground. Transcranial magnetic stimulation (TMS) utilizes the electric field generated by a magnetic coil to stimulate neurons and has been applied, usually paired with electroencephalography, to study the underlying pathophysiology of MS, and in repetitive trains, in the form of repetitive transcranial magnetic stimulation (rTMS), to induce long-lasting changes in neuronal circuits. In this review, we present the available literature on the application of TMS and rTMS in the context of MS, with an emphasis on its therapeutic potential on various clinical aspects, while also naming the ongoing trials, whose results are anticipated in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/revneuro-2020-0140 | DOI Listing |
Alzheimers Dement
December 2024
Adult Neurodevelopment and Geriatric Psychiatry Division, CAMH, Toronto, ON, Canada.
Background: Previous literature has identified slowing of resting state electroencephalography (EEG) rhythm and abnormal cortical excitation in Alzheimer's Dementia (AD). However, the relationship between these two divergent functional abnormalities and cognitive symptoms of AD are not well understood.
Method: Resting state EEG signal was recorded in participants with AD and HCs for 5 minutes with eyes closed.
Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
Background: Cortical excitability is elevated in Alzheimer's disease (AD). Transcranial magnetic stimulation-evoked responses on electromyography (EMG) and electroencephalography (EEG) have captured this increased excitability in motor brain regions. However, it is not yet known if increased excitability is also present in the parietal lobe or the extent to which excitability is related to cognition.
View Article and Find Full Text PDFAddict Biol
January 2025
Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA.
The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
Background: Mild Cognitive Impairment (MCI) is often a precursor to Alzheimer's dementia (AD). Recent research underscores the relationship between mitochondrial dysfunction and amyloid-beta accumulation, raising the prospect of targeting mitochondrial function for intervention. Transcranial photobiomodulation (tPBM), a non-invasive technique utilizing near-infrared light, has been shown to enhance mitochondrial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!