Experimental validation of a recently developed model for single-fiber reflectance spectroscopy.

J Biomed Opt

University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences,, The Netherlands.

Published: February 2021

Significance: We recently developed a model for the reflectance measured with (multi-diameter) single-fiber reflectance (SFR) spectroscopy as a function of the reduced scattering coefficient μs', the absorption coefficient μa, and the phase function parameter psb. We validated this model with simulations.

Aim: We validate our model experimentally. To prevent overfitting, we investigate the wavelength-dependence of psb and propose a parametrization with only three parameters. We also investigate whether this parametrization enables measurements with a single fiber, as opposed to multiple fibers used in multi-diameter SFR (MDSFR).

Approach: We validate our model on 16 phantoms with two concentrations of Intralipid-20% (μs'=13 and 21  cm  -  1 at 500 nm) and eight concentrations of Evans Blue (μa  =  1 to 20  cm  -  1 at 605 nm). We parametrize psb as 10  -  5  ·    (  p1  (  λ  /  650  )    +  p2(λ/650)2  +  p3(λ/650)3  )  .

Results: Average errors were 7% for μs', 11% for μa, and 16% with the parametrization of psb; and 7%, 17%, and 16%, respectively, without. The parametrization of psb improved the fit speed 25 times (94 s to <4  s). Average errors for only one fiber were 50%, 33%, and 186%, respectively.

Conclusions: Our recently developed model provides accurate results for MDSFR measurements but not for a single fiber. The psb parametrization prevents overfitting and speeds up the fit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913601PMC
http://dx.doi.org/10.1117/1.JBO.26.2.025004DOI Listing

Publication Analysis

Top Keywords

developed model
8
single-fiber reflectance
8
validate model
8
16% parametrization
8
parametrization psb
8
model
5
psb
5
experimental validation
4
validation developed
4
model single-fiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!