Significance: We recently developed a model for the reflectance measured with (multi-diameter) single-fiber reflectance (SFR) spectroscopy as a function of the reduced scattering coefficient μs', the absorption coefficient μa, and the phase function parameter psb. We validated this model with simulations.
Aim: We validate our model experimentally. To prevent overfitting, we investigate the wavelength-dependence of psb and propose a parametrization with only three parameters. We also investigate whether this parametrization enables measurements with a single fiber, as opposed to multiple fibers used in multi-diameter SFR (MDSFR).
Approach: We validate our model on 16 phantoms with two concentrations of Intralipid-20% (μs'=13 and 21 cm - 1 at 500 nm) and eight concentrations of Evans Blue (μa = 1 to 20 cm - 1 at 605 nm). We parametrize psb as 10 - 5 · ( p1 ( λ / 650 ) + p2(λ/650)2 + p3(λ/650)3 ) .
Results: Average errors were 7% for μs', 11% for μa, and 16% with the parametrization of psb; and 7%, 17%, and 16%, respectively, without. The parametrization of psb improved the fit speed 25 times (94 s to <4 s). Average errors for only one fiber were 50%, 33%, and 186%, respectively.
Conclusions: Our recently developed model provides accurate results for MDSFR measurements but not for a single fiber. The psb parametrization prevents overfitting and speeds up the fit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913601 | PMC |
http://dx.doi.org/10.1117/1.JBO.26.2.025004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!