Dexmedetomidine alleviates pulmonary edema through the epithelial sodium channel (ENaC) via the PI3K/Akt/Nedd4-2 pathway in LPS-induced acute lung injury.

Immunol Res

Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.

Published: April 2021

Dexmedetomidine (Dex), a highly selective α-adrenergic receptor (αAR) agonist, has an anti-inflammatory property and can alleviate pulmonary edema in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the mechanism is still unclear. In this study, we attempted to investigate the effect of Dex on alveolar epithelial sodium channel (ENaC) in the modulation of alveolar fluid clearance (AFC) and the underlying mechanism. Lipopolysaccharide (LPS) was used to induce acute lung injury (ALI) in rats and alveolar epithelial cell injury in A549 cells. In vivo, Dex markedly reduced pulmonary edema induced by LPS through promoting AFC, prevented LPS-induced downregulation of α-, β-, and γ-ENaC expression, attenuated inflammatory cell infiltration in lung tissue, reduced the concentrations of TNF-α, IL-1β, and IL-6, and increased concentrations of IL-10 in bronchoalveolar lavage fluid (BALF). In A549 cells stimulated with LPS, Dex attenuated LPS-mediated cell injury and the downregulation of α-, β-, and γ-ENaC expression. However, all of these effects were blocked by the PI3K inhibitor LY294002, suggesting that the protective role of Dex is PI3K-dependent. Additionally, Dex increased the expression of phosphorylated Akt and reduced the expression of Nedd4-2, while LY294002 reversed the effect of Dex in vivo and in vitro. Furthermore, insulin-like growth factor (IGF)-1, a PI3K agonists, promoted the expression of phosphorylated Akt and reduced the expression of Nedd4-2 in LPS-stimulated A549 cells, indicating that Dex worked through PI3K, and Akt and Nedd4-2 are downstream of PI3K. In conclusion, Dex alleviates pulmonary edema by suppressing inflammatory response in LPS-induced ALI, and the mechanism is partly related to the upregulation of ENaC expression via the PI3K/Akt/Nedd4-2 signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106593PMC
http://dx.doi.org/10.1007/s12026-021-09176-6DOI Listing

Publication Analysis

Top Keywords

pulmonary edema
16
acute lung
12
lung injury
12
a549 cells
12
dex
9
alleviates pulmonary
8
epithelial sodium
8
sodium channel
8
channel enac
8
lps-induced acute
8

Similar Publications

Negative Pressure Ventilation Ex-Situ Lung Perfusion Preserves Porcine and Human Lungs for 36-Hours.

Clin Transplant

January 2025

Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.

Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.

Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.

View Article and Find Full Text PDF

Objective: To identify and analyze the main findings on computed tomography (CT) scans ordered in the emergency department of a tertiary care hospital.

Materials And Methods: This was a cross-sectional observational study conducted through analysis of CT scans of the head, chest, and abdomen of all patients admitted to the emergency department of a tertiary care hospital over a period of four months.

Results: Among a sample of 331 patients, pathological radiological findings were observed in 59.

View Article and Find Full Text PDF

A 65-year-old patient was admitted to the Institute with complaints of shortness of breath, palpitation, and limb edema. Comorbidities were type 2 diabetes mellitus, gout, obesity. Echo: left ventricular ejection fraction 22%, left ventricular aneurysm (LVA), floating thrombus 5.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), and acute pulmonary edema (APE) are serious illnesses that often require acute care from prehospital emergency medical services (EMSs). These respiratory diseases that cause acute respiratory failure (ARF) are one of the main reasons for hospitalization and death, generating high health care costs. The prevalence of the main respiratory diseases treated in a prehospital environment in the prepandemic period and during the COVID-19 pandemic in Spain is unknown.

View Article and Find Full Text PDF

Objective: In the context of acute cardiogenic pulmonary edema (ACPE), a frequently encountered medical emergency associated with high early mortality rates, there is a need to predict short-term outcomes for risk stratification.Our aim was to derive and validate a model, a simple clinical scoring system using baseline vital signs, clinical and presenting characteristics, and readily available laboratory tests, that allows accurate prediction of short-term mortality in individuals experiencing ACPE.

Methods: This retrospective cohort study included 1088 patients with ACPE from six health centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!