Controlling gut inflammation is important in managing gut disorders in the piglet after weaning. Establishing patterns of inflammation markers in the time subsequent to weaning is important for future research to determine whether interventions are effective in controlling gut inflammation. The objective of this study was to evaluate the intestinal inflammatory response during the postweaning period in piglets. A 45-d study included 108 piglets (weaned at 22 d, body weight 5.53 ± 1.19 kg), distributed in 12 pens with nine pigs per pen. Histomorphometry, gene expression of pro- and anti-inflammatory cytokines, and the quantity of immunoglobulin (Ig) A producing cells were measured in jejunum, ileum, and colon on days 0, 15, 30, and 45 postweaning. Cytokine gene expression in peripheral blood mononuclear cells and Ig quantities were analyzed in blood from piglets on days 0, 15, 30, and 45 postweaning. Histomorphometrical results showed a lower villus length directly after weaning. Results demonstrated a postweaning intestinal inflammation response for at least 15 d postweaning by upregulation of IgA producing cells and IFN-γ, IL-1α, IL-8, IL-10, IL-12α, and TGF-β in jejunum, ileum, and colon. IgM and IgA were upregulated at day 30 postweaning. IgG was downregulated at day 15 postweaning. The results indicate that weaning in piglets is associated with a prolonged and transient response in gene expression of pro- and anti-inflammatory cytokines and IgA producing cells in the intestine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051849 | PMC |
http://dx.doi.org/10.1093/jas/skab065 | DOI Listing |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Summit Medical Group, Bend, OR, USA.
Background: National Comprehensive Cancer Network guidelines recommend sentinel lymph node biopsy (SLNB) for patients with > 10% risk of positivity, consider SLNB with 5-10% risk, and foregoing with < 5% risk. The integrated 31-gene expression profile (i31-GEP) algorithm combines the 31-GEP with clinicopathologic variables, estimating SLN positivity risk.
Methods: The i31-GEP SLNB risk prediction accuracy was assessed in patients with T1-T2 tumors enrolled in the prospective, multicenter DECIDE study (n = 322).
Lipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!