A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gold nanoparticles-modified MnFeO with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH. | LitMetric

Gold nanoparticles-modified MnFeO with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH.

J Hazard Mater

College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082 Hunan, PR China.

Published: July 2021

To decrease the adverse environmental and health-related effects of antibiotics, a series of MnFeO-Au (MFO-Au) composites were prepared by simple co-precipitation and photoreduction methods for efficient photo-Fenton degradation of tetracycline (TC). The synergistic effect of MFO and gold nanoparticles (AuNPs) with high absorption of visible light and strong photogenerated carrier separation efficiency endowed MFO-Au an outstanding photo-Fenton catalytic performance for TC degradation in neutral condition. The surface hydroxyl of MFO profited to generation of •OH, and negative charged or partially polarized AuNPs benefited to adsorption of HO, which had a synergistic effect on enhancing the photo-Fenton catalytic performance of MFO-Au. 88.3% of TC was efficiently removed and about 51.9% of TOC decreased within 90 min. The electron spin resonance and quenching tests suggested that h and e were responsible for the high catalytic degradation and •OH and •O participated in the photo-Fenton reaction. The toxicity assessment by seed germination experiments showed efficient toxicity reduction of this system. Besides, MFO-Au exhibited high stability, good cycle, relatively economical and practical application performance, which is expected to provide potential guidance for the design and combination of noble nanoparticles with high stability and spinel bimetallic oxides with high catalytic activity in photo-Fenton reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125448DOI Listing

Publication Analysis

Top Keywords

photo-fenton degradation
8
degradation tetracycline
8
photo-fenton catalytic
8
catalytic performance
8
high catalytic
8
high stability
8
photo-fenton
6
high
5
gold nanoparticles-modified
4
nanoparticles-modified mnfeo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!