Interspecific germline chimerism mediated by transplantation of primordial germ cells (PGCs) of wild species to domestic hosts promises the conservation of wild birds. Cryopreservation of avian eggs and embryos is impracticable, and currently only frozen PGCs enable conservation of both the male and female descendants. Purebred offspring have been obtained from germline chimeras of wild avian species, proving the feasibility of such technology. In vitro propagation has been optimized for avian PGCs of domestic species; however, evidence is rather limited for successful isolation as well as long-term culture from a single embryo of wild species. With accelerating biodiversity loss, we have committed to preserving current genetic resources by freezing PGCs isolated from individual embryos in addition to their genetic material. We have devised a reliable protocol for the isolation and proliferation of PGCs from wild fowls in the family Phasianidae that are conserved in captive breeding (red junglefowl, bar-tailed pheasant, kalij pheasant, Siamese fireback pheasant, and silver pheasant). We obtained individual isolates of cultured circulating PGCs (49.7%, 79/155) as well as tissue PGCs (92.9%, 144/155). The specific co-culture conditions of autologous embryonic cells, without additional growth factors, facilitated the proliferation of so-called tissue PGCs (the remaining PGCs in embryonic tissue following blood aspiration). Only circulating PGCs left in blood vessels and of PGCs migrating to developing gonads have been previously reported. However, the present study is the first to report on the harvest of ectopic PGCs. The defined conditions sustained continuous proliferation of tissue PGCs for at least six months and maintained PGC identity following cryopreservation. Cultured tissue PGCs of these wild species were extensively characterized for their expression of the germ cell-specific proteins, chicken vasa homolog (CVH) and deleted in azoospermia-like (DAZL), as well as the ability to colonize chicken embryonic gonads. The novel protocol is practical for generating enough PGCs for cryopreservation, transplantation, and additionally, it enables isolation of PGCs from both blood circulation and embryonic tissue simultaneously. For conservation purposes, this approach is potentially applicable more widely to other non-domestic birds than those in the family Phasianidae that were investigated in the present study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2021.02.010 | DOI Listing |
N Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFFront Genome Ed
January 2025
State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
IGMM, University of Montpellier, CNRS, Montpellier, France.
Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.
View Article and Find Full Text PDFOpen Biol
January 2025
Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK.
Primordial germ cells (PGCs) are the founder cells that develop into mature gametes. PGCs emerge during weeks 2-3 of human embryo development. Pluripotency genes are reactivated during PGC specification, including Krüppel-like factor KLF4, but its precise role in PGC development is unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:
Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!