Human metabolism and urinary excretion kinetics of di-n-butyl adipate (DnBA) after oral and dermal administration in three volunteers.

Toxicol Lett

Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany. Electronic address:

Published: June 2021

AI Article Synopsis

  • Di-n-butyl adipate (DnBA) serves as a plasticizer and an alternative to the endocrine disruptor di-n-butyl phthalate, being used in various consumer products, including personal care items.
  • A study involving three volunteers measured how DnBA is metabolized and excreted post oral and dermal dosage, analyzing urine samples for specific metabolites over a set period.
  • The findings indicated that certain metabolites, especially mono-n-butyl adipate and 3-hydroxy-mono-n-butyl adipate, could serve as reliable exposure biomarkers for DnBA, though overall metabolite excretion was low and consistent across participants.

Article Abstract

Di-n-butyl adipate (DnBA) is used as a plasticizer and in various consumer products (e.g. personal care products) replacing, in part, the endocrine disruptor di-n-butyl phthalate (DnBP). We provide quantitative in vivo data on human DnBA metabolism and excretion after oral dose (105-185 μg/kg bw) and dermal application to three volunteers each as a tool for exposure and risk assessment. Complete and consecutive urine samples were collected for two (oral) and four days (dermal), respectively, and analyzed for the metabolites mono-n-butyl adipate (MnBA), 3- and tentative 4-hydroxy-mono-n-butyl adipate (3OH-MnBA, 4OH-MnBA), and 3-carboxy-mono-n-propyl adipate (3cx-MnPrA), as well as the hydrolysis product adipic acid (AA) using stable isotope dilution quantification. Metabolites were excreted within 24 h after oral dose with one or two concentration maxima at 0.8-3.0 h (n = 3) and 4.8-6.3 h (n = 2). AA was the major but unspecific metabolite with urinary excretion fractions (Fs) of 14-26 %. Mean Fs (range) of 3cx-MnPrA, MnBA, 3OH-MnBA, and tentative 4OH-MnBA were low, but consistent between volunteers (0.47 % (0.35-0.63 %), 0.079 % (0.065-0.091 %), 0.012 % (0.006-0.016 %), and 0.005 % (0.002-0.009 %), respectively). MnBA and 3OH-MnBA seem to be suitable, specific exposure biomarkers for DnBA, whereas 3cx-MnPrA and 4OH-MnBA seem to originate also from other, unknown sources not related to DnBA. Compared to the oral study, metabolite excretion in the dermal study was delayed and MnBA excretion was somewhat higher compared to the oxidized metabolites. Based on urinary concentrations and the above excretion fractions, calculated uptakes in the dermal study did not exceed the adipate ester ADI of 5 mg/(kg bw*day).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2021.02.012DOI Listing

Publication Analysis

Top Keywords

urinary excretion
8
di-n-butyl adipate
8
adipate dnba
8
three volunteers
8
oral dose
8
excretion fractions
8
mnba 3oh-mnba
8
dermal study
8
excretion
6
adipate
6

Similar Publications

Background: Doxorubicin (DOX) is a widely used anticancer drug; However, its nephrotoxicity limits its therapeutic efficacy. This study investigates the protective effects of Perilla Alcohol (PA) against DOX-induced nephrotic syndrome (NS), focusing on its antioxidant and anti-inflammatory properties through the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways.

Methods: A DOX-induced nephrotic syndrome (NS) rat model and a DOX-treated Mouse Podocyte Cell line 5 (MPC5) cell model were used to evaluate the renal protective effects of PA.

View Article and Find Full Text PDF

Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.

Chin J Integr Med

January 2025

Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Objective: To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).

Methods: The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.

View Article and Find Full Text PDF

Pathophysiological characterization of the ApoE mouse: A model of diabetes and atherosclerosis.

Methods

January 2025

Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain. Electronic address:

The high prevalence of type 2 diabetes and atherosclerosis makes essential the availability of in vivo experimental models that accurately replicate the pathophysiological mechanisms of these diseases. Apolipoprotein E knockout mice (ApoE) have been used in atherosclerosis studies, and the db/db mice show hyperphagia and obesity. Mice harbouring both alterations (i.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the biodistribution and radiation dosimetry of 68Ga-DATA5m LM4 in patients with gastroenteropancreatic neuroendocrine tumors.

Patients And Methods: Eight patients (5 females and 3 males) with various gastroenteropancreatic neuroendocrine tumors were included in the study. Each patient underwent 3 whole-body PET scans at 10, 60, and 120 minutes after receiving an IV injection of approximately 162.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is the single largest cause of end-stage renal disease (ESRD). Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress have been considered to play a very important role in the progress of diabetic nephropathy (DN). Effective drugs for the treatment of diabetic nephropathy still need to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!