Background: Fidaxomicin has novel pharmacologic effects on C. difficile spore formation including outgrowth inhibition and persistent spore attachment. However, the mechanism of fidaxomicin attachment on spores has not undergone rigorous microscopic studies.

Materials & Methods: Fidaxomicin attachment to C. difficile spores of three distinct ribotypes and C. difficile mutant spores with inactivation of exosporium or spore-coat protein-coding genes were visualized using confocal microscopy with a fidaxomicin-bodipy compound (green fluorescence). The pharmacologic effect of the fidaxomicin-bodipy compound was determined. Confocal microscopy experiments included direct effect on C. difficile wild-type and mutant spores, effect of exosporium removal, and direct attachment to a comparator spore forming organism, Bacillus subtilis.

Results: The fidaxomicin-bodipy compound MIC was 1 mg/L compared to 0.06 mg/L for unlabeled fidaxomicin, a 16-fold increase. Using confocal microscopy, the intracellular localization of fidaxomicin into vegetative C. difficile cells was observed consistent with its RNA polymerase mechanism of action and inhibited spore outgrowth. The fidaxomicin-bodipy compound was visualized outside of the core of C. difficile spores with no co-localization with the membrane staining dye FM4-64. Exosporium removal reduced fidaxomicin-bodipy association with C. difficile spores. Reduced fidaxomicin-bodipy was observed in C. difficile mutant spores for the spore surface proteins CdeC and CotE.

Conclusion: This study visualized a direct attachment of fidaxomicin to C. difficile spores that was diminished with mutants of specific exosporium and spore coat proteins. These data provide advanced insight regarding the anti-spore properties of fidaxomicin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2021.102352DOI Listing

Publication Analysis

Top Keywords

c difficile spores
16
fidaxomicin-bodipy compound
16
mutant spores
12
confocal microscopy
12
spores
9
c difficile
9
fidaxomicin attachment
8
c difficile mutant
8
exosporium removal
8
direct attachment
8

Similar Publications

Cationic Anthraquinone Analogs as Selective Antimicrobials.

Microbiol Insights

May 2019

Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.

Development of new antibiotics is always needed in the fight against growing threat from multiple drug-resistant bacteria, such as resistant Gram-negative (G-) and . While the development of broad-spectrum antibiotics has attracted great attention, careful administration of these antibiotics is important to avoid adverse effects, like infection (CDI). The use of broad-spectrum antibiotics, for example, quinolones, can increase the risk of CDI by eradicating the protective bacteria in intestine and encouraging spore germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!