Background: Dengue fever is a mosquito-borne infectious disease that has caused major health problems. Variations in dengue virus (DENV) genes are important features of epidemic outbreaks. However, the associations of DENV genes with epidemic potential have not been extensively examined. Here, we assessed new genotype invasion of DENV-1 isolated from Guangzhou in China to evaluate associations with epidemic outbreaks.
Methodology/principal Findings: We used DENV-1 strains isolated from sera of dengue cases from 2002 to 2016 in Guangzhou for complete genome sequencing. A neighbor-joining phylogenetic tree was constructed to elucidate the genotype characteristics and determine if new genotype invasion was correlated with major outbreaks. In our study, a new genotype invasion event was observed during each significant outbreak period in 2002-2003, 2006-2007, and 2013-2014. Genotype II was the main epidemic genotype in 2003 and before. Invasion of genotype I in 2006 caused an unusual outbreak with 765 cases (relative risk [RR] = 16.24, 95% confidence interval [CI] 12.41-21.25). At the middle and late stages of the 2013 outbreak, genotype III was introduced to Guangzhou as a new genotype invasion responsible for 37,340 cases with RR 541.73 (95% CI 417.78-702.45), after which genotypes I and III began co-circulating. Base mutations occurred after new genotype invasion, and the gene sequence of NS3 protein had the lowest average similarity ratio (99.82%), followed by the gene sequence of E protein (99.86%), as compared to the 2013 strain.
Conclusions/significance: Genotype replacement and co-circulation of multiple DENV-1 genotypes were observed. New genotype invasion was highly correlated with local unusual outbreaks. In addition to DENV-1 genotype I in the unprecedented outbreak in 2014, new genotype invasion by DENV-1 genotype III occurred in Guangzhou.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910771 | PMC |
http://dx.doi.org/10.1186/s13071-021-04631-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!