Production of small ruminant morbillivirus, rift valley fever virus and lumpy skin disease virus in CelCradle™ -500A bioreactors.

BMC Vet Res

Laboratory of Research and Development virology, MCI Animal Health, Lot. 157, Zone Industrielle Sud-Ouest (ERAC) B.P: 278, 28810, Mohammedia, Morocco.

Published: February 2021

Background: Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD).

Results: Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 10 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 10 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 10 as compared to 6.3 × 10 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus).

Conclusions: This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913422PMC
http://dx.doi.org/10.1186/s12917-021-02801-4DOI Listing

Publication Analysis

Top Keywords

rift valley
20
valley fever
20
fever virus
20
lumpy skin
20
skin disease
20
cell factories
20
disease virus
16
cell densities
12
virus
11
cell
11

Similar Publications

Research progress of mosquito-borne virus mRNA vaccines.

Mol Ther Methods Clin Dev

March 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus.

View Article and Find Full Text PDF

The advancement of small ruminant farming in Benin has encountered challenges associated with health issues and agricultural practices. This study aimed to provide the initial documentation of the prevalence of enzootic ovine abortion and evaluate the health status of animals concerning various recurring diseases on traditional small ruminant farms in Benin. In 2023, a semi-structured survey of 450 farms was carried out in two agricultural development centers in Benin.

View Article and Find Full Text PDF

Achievement of one health multi-sectoral collaboration in containment of Rift Valley Fever outbreak, Sudan, Red Sea State 2019.

Eur J Public Health

January 2025

Federal Ministry of Health, Directorate Health Emergencies and Epidemics Control (HEEC), Khartoum, Sudan.

Rift Valley Fever is endemic in Sudan, with a notable outbreak declared in 2019, affecting multiple states. In this study, we examine the Red Sea State, Sudan's experience in applying the One Health approach, to contain Red-Sea RVF outbreak. A retrospective analysis of national and sub-national data and a review of literature were conducted to assess the application of One Health response and to derive lessons learned.

View Article and Find Full Text PDF

The Chikungunya virus (CHIKV) presents substantial public health challenges in the Eastern Mediterranean Region (EMR), with its prevalence and interaction with other arboviruses (ABVs) remaining poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CHIKV and its association with other ABVs, such as dengue virus (DENV), Rift Valley fever virus (RVFV), malaria, and yellow fever virus (YFV), in the EMR. We systematically searched databases including PubMed, Embase, Web of Science, Scopus, Cochrane Library, CINAHL, PsycINFO, and ScienceDirect to identify epidemiological studies that report CHIKV prevalence and provide odds ratios (ORs) for CHIKV compared to other ABVs.

View Article and Find Full Text PDF

Aedes-borne arboviral human infections in Europe from 2000 to 2023: A systematic review and meta-analysis.

Travel Med Infect Dis

January 2025

University of Zürich, Epidemiology, Biostatistics and Prevention Institute, Hirschengraben 84, 8001, Zürich, Switzerland; WHO Collaborating Centre for Travellers' Health, Department of Global and Public Health, MilMedBiol Competence Centre, Hirschengraben 84, 8001, Zürich, Switzerland.

Introduction: Aedes-borne arboviral infections, both imported and autochthonous, are reported in Europe. We evaluated the landscape of these infections in Europe over 23 years and attempted to pre-empt the trajectory of impact of these infections in the climatic context of Aedes mosquito expansion in Europe.

Methods: This systematic review was conducted in accordance with PRISMA guidelines and registered in Prospero (CRD42023360259).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!