Experimental investigation of oscillating flow characteristics at the exit of a stacked mesh grid regenerator.

J Acoust Soc Am

Institut Pprime, CNRS - Université de Poitiers-ENSMA, Département Fluides-Thermique-Combustion, ENSIP, 6 rue Marcel Doré Bât. B17-BP 633, 86022 Poitiers Cedex, France.

Published: February 2021

The aim of this study is to investigate the oscillating flow velocity field at the exit of different stacked mesh grid regenerators using Particle Image Velocimetry measurements. Twelve different experimental cases are discussed, yielding oscillating flow fields at the exit of four kinds of regenerators for different acoustic levels. The regenerators are classified according to the mesh wire size to viscous penetration depth ratio and according to the method of stacking the mesh grids. Based on the analysis of the vorticity fields at the exit of the regenerator, three groups of flow patterns are identified. This classification is correctly verified by using the Reynolds number (based on the acoustic amplitude and wire diameter) and the Strouhal number (based on the acoustic displacement amplitude and wire diameter). The characteristics of the fluctuating velocity components are investigated for these various flow patterns. The critical Reynolds number, past which the flow is highly dissipative, is determined. The dissipation timescale is investigated and the quasi-steady approximation is found to be valid for the analysis of the oscillating flow at the exit of the regenerator mesh.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0003375DOI Listing

Publication Analysis

Top Keywords

oscillating flow
16
exit stacked
8
stacked mesh
8
mesh grid
8
fields exit
8
exit regenerator
8
flow patterns
8
reynolds number
8
number based
8
based acoustic
8

Similar Publications

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Building mathematical models of brains is difficult because of the sheer complexity of the problem. One potential starting point is basal cognition, which gives an abstract representation of a range of organisms without central nervous systems, including fungi, slime moulds and bacteria. We propose one such model, demonstrating how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner, mimicking the way these organisms function.

View Article and Find Full Text PDF

All cells in the human body, including cancer cells, possess specific electrical properties crucial for their functions. These properties are notably different between normal and cancerous cells. Cancer cells are characterized by autonomous oscillations and damped electromagnetic field (EMF) activation.

View Article and Find Full Text PDF

Exercise-induced cytosolic calcium oscillations: mechanisms and modulation of T-cell function.

Biochem Biophys Res Commun

January 2025

School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China. Electronic address:

This study investigated time-dependent changes in intracellular Ca⁺ levels in T cells, regulatory mechanisms, and functional effects after acute exercise. Male C57BL/6 mice were assigned to control and exercise groups, with the latter sacrificed at different intervals post-exercise. Murine splenic lymphocytes were isolated, and cytosolic Ca⁺ levels were measured using Fluo-3/AM.

View Article and Find Full Text PDF

Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!