Hybrid osmotic Monte Carlo simulations were performed to anticipate the tunability of the separation performance of the flexible Zeolitic Imidazole Framework-8 (ZIF-8) via the application of an external mechanical pressure. This synergistic combination of mechanical control of the pore aperture/cage dimension and guest adsorption was applied to the challenging hexane isomers separation processes of vital importance in the field of petrochemical industry. The application of a mechanical pressure above 1 GPa was predicted to boost the linear hexane/2-methylpentane and 2-methylpentane/2,3-dimethylbutane selectivity by 40% and 17%, respectively, as compared to the pristine ZIF-8. We further unraveled the microscopic origin of this optimized performance with an in-depth analysis of the critical interplay between the structural changes of the ZIF-8 framework and the conformational rearrangements of C6 isomers under mechanical pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0040469 | DOI Listing |
Sci Rep
January 2025
Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFISA Trans
January 2025
School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523015, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China. Electronic address:
Excavators, a type of human-operated construction machinery, suffer from poor hydraulic load braking stability, which seriously affects operator comfort. To address this challenge, this study investigates load braking laws through model analysis and designs an open-loop control algorithm called command reshaping, which can prolong the small-opening time of the main valve by segmentally adjusting the joystick command during load braking and then actively adjusting the key parameters reflecting the system's kinetic-potential energy state, thereby suppressing braking oscillations. The experimental results based on a 1.
View Article and Find Full Text PDFDev Cell
January 2025
Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden. Electronic address:
Reactivation of cell division is crucial for the regeneration of damaged tissues, which is a fundamental process across all multicellular organisms. However, the mechanisms underlying the activation of cell division in plants during regeneration remain poorly understood. Here, we show that single-cell endodermal ablation generates a transient change in the local mechanical pressure on neighboring pericycle cells to activate patterned cell division that is crucial for tissue regeneration in Arabidopsis roots.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.
Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!