Second-harmonic generation in nonlinear plasmonic lattices enhanced by quantum emitter gain medium.

J Chem Phys

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: February 2021

We report on a theoretical study of second-harmonic generation (SHG) in plasmonic nanostructures interacting with two-level quantum emitters (QEs) under incoherent energy pump. We generalize the driven-dissipative Tavis-Cummings model by introducing the anharmonic surface plasmon-polariton (SPP) mode coupled to QEs and examine physical properties of corresponding SPP-QE polariton states. Our calculations of the SHG efficiency for strong QE-SPP coupling demonstrate orders of magnitude enhancement facilitated by the polariton gain. We further discuss time-domain numerical simulations of SHG in a square lattice comprising Ag nanopillars coupled to QEs utilizing a fully vectorial nonperturbative nonlinear hydrodynamic model for conduction electrons coupled to Maxwell-Bloch equations for QEs. The simulations support the idea of gain enhanced SHG and show orders of magnitude increase in the SHG efficiency as the QEs are tuned in resonance with the lattice plasmon mode and brought above the population inversion threshold by incoherent pumping. By varying pump frequency and tuning QEs to a localized plasmon mode, we demonstrate further enhancement of the SHG efficiency facilitated by strong local electric fields. The incident light polarization dependence of the SHG is examined and related to the symmetries of participating plasmon modes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0037453DOI Listing

Publication Analysis

Top Keywords

shg efficiency
12
second-harmonic generation
8
coupled qes
8
orders magnitude
8
plasmon mode
8
shg
7
qes
6
generation nonlinear
4
nonlinear plasmonic
4
plasmonic lattices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!