The spatiotemporal expression of zygotic genes is regulated by transcription factors, which mediate cell fate decision and morphogenesis. Investigation of the expression patterns and their transcriptional regulatory relationships is crucial to understand embryonic development. Staged RNA-seq of the ascidian has previously shown that nine genes encoding transcription factors are transiently expressed at the blastula stage, which is the stage at which cell fates are specified and differentiation starts. Six of these transcription factors have already been found to play important roles during early development. However, the functions of the other transcription factors (FoxJ-r, SoxF, and SP8/9) remain unknown. The study of the spatial and temporal expression patterns showed that all three genes were expressed in the animal hemisphere as early as the 16-cell stage. This is likely due to transcription factor genes that are expressed in the vegetal hemisphere, which have been extensively and comprehensively analyzed in previous studies of ascidians. Functional analyses using FoxJ-r morphants showed that they resulted in the disruption of laterality and the absence of epidermal mono-cilia, suggesting FoxJ-r functions in cilia formation and, consequently, in the generation of left-right asymmetry, as observed in vertebrates. SoxF knockdown resulted in incomplete epiboly by the ectoderm during gastrulation, while SP8/9 knockdown showed no phenotype until the tailbud stage in the present study, although it was expressed during blastula stages. Our results indicate that transcription factor genes expressed at the cleavage stages play roles in diverse functions, and are not limited to cell fate specification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2108/zs200128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!