Restoration of spawning and juvenile habitats is often used to restore fish abundances in rivers, although often with unclear results. To study the effects of habitat limitations on the common barbel (Barbus barbus), a riverine litophilic cyprinid fish, an age-structured population model was developed. Using a Bayesian modeling approach, spawning and fry (0+ juvenile) habitat availability was integrated in the model in a spatially explicit way. Using Beverton-Holt and Ricker recruitment models, density dependence was incorporated in the spawning process and the recruitment of 0+ juveniles. Model parameters and their uncertainty ranges were obtained from reviewing the existing literature. The uncertainty of the processes was intrinsically accounted for by the inherently probabilistic nature of the Bayesian model. By testing various scenarios of habitat availabilities for the barbel, we hypothesize that improvement of the fish stock will be reached only at a well specified ratio of spawning to fry habitat. Model simulations revealed substantial abundance improvements at rather equal amounts of about 10% cover of both habitats, while even substantial improvements of either spawning or fry habitats only will result in little or no increase of abundance. Higher ratios of spawning to fry habitat were found to lower population recovery times. This work provides a tool that serves the assessment and comparison of river restoration scenarios as well as benchmarking rehabilitation targets in the planning phase. When targeting restoration of fish stocks, focusing only on one key life stage or process (such as spawning), without considering potential bottlenecks in other stages, can result in little to no improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112100 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
December 2024
College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Electronic address:
Cold temperature is an effective method of achieving out-of-season reproduction and obtaining fry in the autumn. This study investigated the effects of low-temperature (12-16 °C) environment on the out-of-season reproduction of largemouth bass, particularly the delayed effects on ovarian development. During the period of delayed out-of-season reproduction, there was a significant reduction in the levels of serum sex hormones (FSH and LH) and their respective receptors (FSHR and LHCGR).
View Article and Find Full Text PDFEnviron Pollut
December 2024
Research Faculty of Agriculture, Hokkaido University, N9 W9, Sapporo, Hokkaido, 060-8589, Japan.
Sci Total Environ
November 2024
Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany. Electronic address:
Climate change, with its profound effects on stream sediment, hydrological, and temperature dynamics, will exacerbate impacts on habitat conditions for many species, particularly those with vulnerable early life stages relying on the hyporheic zone, such as gravel-spawning fishes. Due to the complex and interactive nature of multiple stressor effects, we employed large-scale outdoor mesocosms to systemically test how the reproductive success of three gravel-spawning fish species brown trout (Salmo trutta), nase, (Chrondrostoma nasus) and Danube salmon (Hucho hucho) was affected by individual and combined effects of warming (+3-4 °C), fine sediment (increase in <0.85 mm by 22 %) and low-flow (eightfold discharge-reduction).
View Article and Find Full Text PDFAnimals (Basel)
July 2024
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
To explore a method of improving the reproductive performance of the striped bamboo shark, three groups (D0, D1, and D2) of mature individuals were fed squid with (D1 and D2) or without (D0) a nutritional fortifier during the breeding seasons of 2022 and 2023. Compared with the D0 group, the D1 and D2 groups had an increase of 20.90% and 31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!