In radiation therapy, a CT image is used to manually delineate the organs and plan the treatment. During the treatment, a cone beam CT (CBCT) is often acquired to monitor the anatomical modifications. For this purpose, automatic organ segmentation on CBCT is a crucial step. However, manual segmentations on CBCT are scarce, and models trained with CT data do not generalize well to CBCT images. We investigate adversarial networks and intensity-based data augmentation, two strategies leveraging large databases of annotated CTs to train neural networks for segmentation on CBCT. Adversarial networks consist of a 3D U-Net segmenter and a domain classifier. The proposed framework is aimed at encouraging the learning of filters producing more accurate segmentations on CBCT. Intensity-based data augmentation consists in modifying the training CT images to reduce the gap between CT and CBCT distributions. The proposed adversarial networks reach DSCs of 0.787, 0.447, and 0.660 for the bladder, rectum, and prostate respectively, which is an improvement over the DSCs of 0.749, 0.179, and 0.629 for "source only" training. Our brightness-based data augmentation reaches DSCs of 0.837, 0.701, and 0.734, which outperforms the morphons registration algorithms for the bladder (0.813) and rectum (0.653), while performing similarly on the prostate (0.731). The proposed adversarial training framework can be used for any segmentation application where training and test distributions differ. Our intensity-based data augmentation can be used for CBCT segmentation to help achieve the prescribed dose on target and lower the dose delivered to healthy organs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104269DOI Listing

Publication Analysis

Top Keywords

data augmentation
20
adversarial networks
16
intensity-based data
16
networks intensity-based
8
organ segmentation
8
cone beam
8
cbct
8
segmentation cbct
8
segmentations cbct
8
proposed adversarial
8

Similar Publications

Background: Simulation-based learning (SBL) and augmented reality (AR) /virtual reality (VR) are increasingly adapted and investigated globally to aid traditional teaching methods of clinical skills in several fields of clinical dentistry. This cross-sectional study was, therefore, aimed to assess the availability of such technology to Prosthodontics postgraduate trainees in Pakistan, as well as their introspective views regarding the effectiveness of adapting to simulation-based learning methods.

Method: Total population sampling yielded a sample of 200 participants.

View Article and Find Full Text PDF

Background: Cancer classification has consistently been a challenging problem, with the main difficulties being high-dimensional data and the collection of patient samples. Concretely, obtaining patient samples is a costly and resource-intensive process, and imbalances often exist between samples. Moreover, expression data is characterized by high dimensionality, small samples and high noise, which could easily lead to struggles such as dimensionality catastrophe and overfitting.

View Article and Find Full Text PDF

A framework for hardware trojan detection based on contrastive learning.

Sci Rep

December 2024

Electronic Engineering College, Heilongjiang University, Harbin, 150080, China.

With the rapid development of the semiconductor industry, Hardware Trojans (HT) as a kind of malicious function that can be implanted at will in all processes of integrated circuit design, manufacturing, and deployment have become a great threat in the field of hardware security. Side-channel analysis is widely used in the detection of HT due to its high efficiency, non-contact nature, and accuracy. In this paper, we propose a framework for HT detection based on contrastive learning using power consumption information in unsupervised or weakly supervised scenarios.

View Article and Find Full Text PDF

The Internet of Things (IoT) network is a fast-growing technology, which is efficiently used in various applications. In an IoT network, the massive amount of connecting nodes is the existence of day-to-day communication challenges. The platform of IoT uses a cloud service as a backend for processing information and maintaining remote control.

View Article and Find Full Text PDF

Health event prediction is empowered by the rapid and wide application of electronic health records (EHR). In the Intensive Care Unit (ICU), precisely predicting the health related events in advance is essential for providing treatment and intervention to improve the patients outcomes. EHR is a kind of multi-modal data containing clinical text, time series, structured data, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!