Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini. Consequently, TWtail and CARMIL CPI restrict the CP in distinct conformations of open and closed forms, respectively. Interestingly, V-1, which targets CP away from the TWtail binding site, also favors the open-form CP. Consistently, TWtail forms a stable ternary complex with CP and V-1, a striking contrast to CARMIL CPI, which rapidly dissociates V-1 from CP. Our results demonstrate that TWtail is a unique CP-binding motif that regulates CP in a manner distinct from CARMIL CPI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2021.166891 | DOI Listing |
Curr Biol
November 2024
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA. Electronic address:
bioRxiv
May 2024
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO.
Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as CARMIL, CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1 / myotrophin binds to the F-actin binding site on CP and sterically blocks CP from binding barbed ends.
View Article and Find Full Text PDFJ Mol Biol
December 2023
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO, United States. Electronic address:
Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands.
View Article and Find Full Text PDFDev Biol
January 2022
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA. Electronic address:
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins.
View Article and Find Full Text PDFJ Mol Biol
April 2021
Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan.
Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!