Secondary metabolites are produced by plants and are classified based on their chemical structure or the biosynthetic routes through which they are synthesized. Among them, flavonoids, including anthocyanins and pro-anthocyanidins (PAs), are abundant in leaves, flowers, fruits, and seed coats in plants. The anthocyanin biosynthetic pathway has been intensively studied, but the molecular mechanism of anthocyanin transport from the synthesis site to the storage site needs attention. Although the major transporters are well defined yet, the redundancy of these transporters for structurally similar or dis-similar anthocyanins motivates additional research. Herein, we reviewed the role of membrane transporters involved in anthocyanin transport, including ATP-binding cassette, multidrug and toxic compound extrusion (MATE), Bilitranslocase-homolog (BTL), and vesicle-mediated transport. We also highlight the ability of transporters to cater distinct anthocyanins or their chemically-modified forms with overlapping transport mechanisms and sequestration into the vacuoles. Our understanding of the anthocyanin transporters could provide anthocyanin-rich crops and fruits with a benefit on human health at a large scale.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13378DOI Listing

Publication Analysis

Top Keywords

anthocyanin transport
12
anthocyanin
5
transport
5
transporters
5
spotlight overlapping
4
overlapping routes
4
routes partners
4
partners anthocyanin
4
transport plants
4
plants secondary
4

Similar Publications

The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.

Plant Physiol Biochem

January 2025

Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).

View Article and Find Full Text PDF

Background: Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches.

View Article and Find Full Text PDF

Relevance of Anthocyanin Metabolites Generated During Digestion on Bioactivity Attributed to Intact Anthocyanins.

Foods

December 2024

Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico.

Epidemiological and in vitro studies suggest that dietary anthocyanins in their intact form exert beneficial effects on human health. However, the potential contributions of anthocyanin metabolites to these beneficial effects have been underestimated. The objective of this review was to critically analyze the outcomes of studies concerning the formation, identification, cellular transport, and biological actions of anthocyanin metabolites generated during digestion to formulate several premises supporting the idea that these compounds largely contribute to human health.

View Article and Find Full Text PDF

Discovery of cyanidin-3-O-galactoside as a novel CNT2 inhibitor for the treatment of hyperuricemia.

Bioorg Chem

January 2025

Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!