Silver nanoparticles (Ag NPs) have wide medical and industrial applications; therefore, their release into aquatic environments is a problematic issue. The present study aims to evaluate the removal efficiency of Ag NPs from water using orange peel (OP) and banana peel (BP) to moderate their toxicity on Oreochromis niloticus. Fish were divided into 4 groups: control group (dechlorinated tap water), Ag NPs (4 mg/L) exposed group, Ag NPs (4 mg/L) + OP (40 mg/L) group, and Ag NPs (4 mg/L) + BP (40 mg/L) group for 24 h, 48 h, and 96 h. The adsorptive ability of both peels was confirmed by scanning electron microscope and energy-dispersive X-ray spectroscopy after the exposure processes. The biochemical results revealed a gradual elevation in plasma glucose, total proteins, globulin, liver enzymes (AST, ALT, and ALP), creatinine, and uric acid after Ag NPs exposure, while albumin and total lipid concentrations were significantly decreased. The recorded antioxidant biomarkers in gills, and liver tissues after Ag NPs exposure showed severe oxidative damages (maximally after 96 h) as indicated by marked elevations in thiobarbituric acid reactive substances, glutathione peroxidase, catalase, and superoxide dismutase values, and decreased glutathione reduced content. All studied parameters restored more or less to that of control groups after OP and BP water treatment. The adsorbent abilities of both peels could reduce Ag NPs bioavailability and moderate their toxicological impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-13145-9DOI Listing

Publication Analysis

Top Keywords

nps mg/l
12
silver nanoparticles
8
nps
8
group nps
8
mg/l mg/l
8
mg/l group
8
nps exposure
8
mg/l
5
adsorbent capacity
4
capacity orange
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!