The purpose of this article is to demonstrate how a new cross-community leadership team came together, collaborated, coordinated across academic units with external community partners, and executed a joint mission to address the unmet clinical need for medical face shields during these unprecedented times. Key aspects of this success include the ability to forge and leverage new opportunities, overcome challenges, adapt to changing constraints, and serve the significant need across the Philadelphia region and healthcare systems. We teamed to design-build durable face shields (AJFlex Shields). This was accomplished by high-volume manufacturing via injection molding and by 3-D printing the key headband component that supports the protective shield. Partnering with industry collaborators and civic-minded community allies proved to be essential to bolster production and deliver approximately 33,000 face shields to more than 100 organizations in the region. Our interdisciplinary team of engineers, clinicians, product designers, manufacturers, distributors, and dedicated volunteers is committed to continuing the design-build effort and providing Drexel AJFlex Shields to our communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908945PMC
http://dx.doi.org/10.1007/s10439-021-02743-wDOI Listing

Publication Analysis

Top Keywords

face shields
16
drexel ajflex
8
ajflex shields
8
shields
6
cross university-led
4
university-led covid-19
4
covid-19 rapid-response
4
rapid-response effort
4
effort design
4
design build
4

Similar Publications

Background: The consequence of non-compliance with patient radiation safety standards increases unnecessary radiation exposure with high chances of harmful biological effects. Radiographers are trained to prevent these harmful effects by enforcing radiation protection, which is achieved through proper techniques, equipment, shielding materials and beam collimation.

Aim: The study aimed to explore compliance with radiation protection by radiographers in Eswatini public health facilities (PHFs).

View Article and Find Full Text PDF

Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography.

View Article and Find Full Text PDF

Objective: to analyze the association between participation in training activities and the adherence to and use of personal protective equipment by workers and professionals involved in Health Residency Programs in Primary Health Care during the COVID-19 pandemic.

Methods: a cross-sectional study in Brazil between August/2020 and March/2021. We utilized the EPI-APS COVID-19 instrument and its adapted version for resident professionals.

View Article and Find Full Text PDF

Highly Humidity-Resistant Oxynitride Phosphor BaSiNO:Ce for pc-LEDs.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, P. R. China.

Many phosphor hosts, for example, nitrides and sulfides, often face challenges such as hydrolysis and oxidation, limiting their application in phosphor-converted white light-emitting diodes (pc-LEDs). In this study, we developed a highly humidity-resistant yellow-green-emitting phosphor BaSiNO:Ce (BSNO:Ce). The DFT calculations revealed a high Debye temperature (Θ = 1159 K), indicating a rigid crystal structure that contributes to the photoluminescence thermal quenching resistance of BSNO.

View Article and Find Full Text PDF

This article uses the engineering background of the Zhengzhou Metro Line 5 with a cement-soil group pile composite foundation. It simplifies the composite foundation using the area-weighted composite modulus method and establishes a finite element model of a double-line EPBM passing beneath the cement-soil group pile composite foundation building. The calculation results were compared and validated against monitoring data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!