Neurosteroid allopregnanolone (3α,5α-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors.

Transl Psychiatry

Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA.

Published: February 2021

We have shown that endogenous neurosteroids, including pregnenolone and 3α,5α-THP inhibit toll-like receptor 4 (TLR4) signal activation in mouse macrophages and the brain of alcohol-preferring (P) rat, which exhibits innate TLR4 signal activation. The current studies were designed to examine whether other activated TLR signals are similarly inhibited by 3α,5α-THP. We report that 3α,5α-THP inhibits selective agonist-mediated activation of TLR2 and TLR7, but not TLR3 signaling in the RAW246.7 macrophage cell line. The TLR4 and TLR7 signals are innately activated in the amygdala and NAc from P rat brains and inhibited by 3α,5α-THP. The TLR2 and TLR3 signals are not activated in P rat brain and they are not affected by 3α,5α-THP. Co-immunoprecipitation studies indicate that 3α,5α-THP inhibits the binding of MyD88 with TLR4 or TLR7 in P rat brain, but the levels of TLR4 co-precipitating with TRIF are not altered by 3α,5α-THP treatment. Collectively, the data indicate that 3α,5α-THP inhibits MyD88- but not TRIF-dependent TLR signal activation and the production of pro-inflammatory mediators through its ability to block TLR-MyD88 binding. These results have applicability to many conditions involving pro-inflammatory TLR activation of cytokines, chemokines, and interferons and support the use of 3α,5α-THP as a therapeutic for inflammatory disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909379PMC
http://dx.doi.org/10.1038/s41398-021-01266-1DOI Listing

Publication Analysis

Top Keywords

3α5α-thp inhibits
16
signal activation
12
3α5α-thp
10
tlr4 signal
8
inhibited 3α5α-thp
8
tlr4 tlr7
8
rat brain
8
indicate 3α5α-thp
8
tlr4
5
activation
5

Similar Publications

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of - extracts.

Mol Omics

January 2025

Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.

Metabolic associated steatohepatitis characterized by lipid accumulation, inflammation and fibrosis, is a growing global health issue, contributing to severe liver-related mortality. With limited effective treatments available, there is an urgent need for novel therapeutic strategies. , rich in antioxidants, offers potential for combating steatohepatitis, but its cytotoxicity presents challenges.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

This article examines the signification of the principle of constancy in Freud's pre-psychoanalytic drafts and papers and in . It is argued that Freud's principle differs from seemingly similar principles proposed by Breuer and Fechner, and that it constitutes an assumption about the maintaining of a constant amount of mobile biophysical energy whose purpose is to return to equilibrium, but, proceeding from the primary functions of discharge (principle of inertia) and accumulation (exigencies of life), to consolidate an asymmetry within the nervous system. This gives rise to a set of quasi-psychological dualisms: an energetic dualism between kinetic and tonic energy; a systemic dualism between impermeable and permeable neurons; and a processual dualism between courses of the excitation with and without the inhibiting influence of the ego.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!