Rainfall-triggered shallow landslides are destructive hazards and play an important role in landscape processes. A theory explaining the size distributions of such features remains elusive. Prior work connects size distributions to topography, but field-mapped inventories reveal pronounced similarities in the form, mode, and spread of distributions from diverse landscapes. We analyze nearly identical distributions occurring in the Oregon Coast Range and the English Lake District, two regions of strikingly different topography, lithology, and vegetation. Similarity in minimum sizes at these sites is partly explained by theory that accounts for the interplay of mechanical soil strength controls resisting failure. Maximum sizes, however, are not explained by current theory. We develop a generalized framework to account for the entire size distribution by unifying a mechanistic slope stability model with a flexible spatial-statistical description for the variability of hillslope strength. Using hillslope-scale numerical experiments, we find that landslides can occur not only in individual low strength areas but also across multiple smaller patches that coalesce. We show that reproducing observed size distributions requires spatial strength variations to be strongly localized, of large amplitude, and a consequence of multiple interacting factors. Such constraints can act together with the mechanical determinants of landslide initiation to produce size distributions of broadly similar character in widely different landscapes, as found in our examples. We propose that size distributions reflect the systematic scale dependence of the spatially averaged strength. Our results highlight the critical need to constrain the form, amplitude, and wavelength of spatial variability in material strength properties of hillslopes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936322 | PMC |
http://dx.doi.org/10.1073/pnas.2021855118 | DOI Listing |
JAMA Dermatol
January 2025
Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri.
Importance: Cutaneous pyogenic granulomas (PGs) are commonly encountered, benign, vascular tumors, in which epidemiologic factors have been variably reported, in part, due to sample size limitations and a focus on either adult or pediatric patients.
Objective: To assemble a large dataset of pathologically diagnosed PGs across the continuum of age and investigate patterns of PGs by demographic factors, including age, sex, and anatomical location.
Design, Setting, And Participants: This retrospective case series included case reports of patients with pathologically confirmed PGs of cutaneous origin reported between April 1, 2010, to March 31, 2020.
Anal Chem
January 2025
Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China.
Neuropilin 1 (NRP1) is upregulated in various types of malignant tumors, especially non-small-cell lung cancer (NSCLC). However, the precise mechanisms for membrane localization and regulation are not fully understood. Observations from super-resolution microscopy have revealed that NRP1 tends to form nanoscale clusters on the cell membrane, with these clusters varying significantly in size and density across different regions.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
Giant unilamellar vesicles (GUVs) are ideal for studying cellular mechanisms due to their cell-mimicking morphology and size. The formation, stability, and immobilization of these vesicles are crucial for drug delivery and bioimaging studies. Separately, metal-organic frameworks (MOFs) are actively researched owing to their unique and varied properties, yet little is known about the interaction between MOFs and phospholipids.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Biology, Università di Pisa, Pisa, Italy.
The fibula, despite being traditionally overlooked compared to the femur and the tibia, has recently received attention in primate functional morphology due to its correlation with the degree of arboreality (DOA). Highlighting further fibular features that are associated with arboreal habits would be key to improving palaeobiological inferences in fossil specimens. Here we present the first investigation on the trabecular bone structure of the primate fibula, focusing on the distal epiphysis, across a vast array of species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!