Antibiotics are considered one of the greatest advances of medicine and, in addition to their use in treating a wide spectrum of illnesses, they have been widely employed to promote animal growth. As many of those pharmaceuticals are only partially absorbed by the digestive system, a considerable fraction is excreted in its original active form or only partially metabolized. Therefore, the use of animal excrement in agriculture represents one of the principal routes of insertion of antibiotics into the environment. Within that context, plants, principally those of agricultural interest, will be exposed to those compounds when present in the soil or when irrigated with contaminated water. Although not yet fully understood, there are reports of phytotoxic effects of antibiotics that can diminish agricultural production. This review is designed to provide a general and integrative overview of physiological alterations observed in plants caused by environmental exposures to veterinary-use antibiotics. This text principally focuses on the processes involved in antibody absorption and accumulation, and their effects on the primary (photosynthesis, respiration, nitrogen assimilation) and oxidative metabolisms of plants. We also bring attention to germinative and plant establishment processes under conditions of antibiotic contamination. The different effects of different antibiotics on plant physiology are listed here to provide a better understanding of their phytotoxicities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.144902 | DOI Listing |
J Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.
The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:
Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.
View Article and Find Full Text PDFPlants (Basel)
January 2025
The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland.
Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. a commensal microorganism but is also responsible for numerous infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!