Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications.

J Colloid Interface Sci

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Published: June 2021

Confronted with microwave pollution issues, there is an urgent need for microwave absorption materials that possess optimal combinations of dielectric loss and magnetic loss properties. While a variety of studies focus on the components, the construction of nanostructure is rarely studied, which is of equivalent significance to microwave absorber design. In this work, Co-ZIF-67 was adopted as self-template to grow N-doped graphene/carbon nanotube interlinked conductive networks in-situ under a one-step carbonization process with tailored microwave absorption properties. Diverse microwave absorption performance could be achieved by directly adjusting the proportions among ingredients and the calcination temperature, obtaining a maximum value of reflection loss of -65.45 dB at 17.5 GHz with a sample thickness of just 1.5 mm. The effective absorption bandwidth could be tailored from 3.75 to 18 GHz among different thickness as required. The nanostructures had an apparent impact on the corresponding microwave absorption performance, in which the N-doped carbon-based conductive networks, ferromagnetic cobalt atoms, and interfaces among heterostructure strengthened the dipolar polarization and conductivity loss, magnetic loss, and interfacial polarization, respectively. This synthesis strategy offers a promising pathway for integrating nanostructures and functions, catering to requirements for designing and optimizing prospective microwave absorbers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.02.008DOI Listing

Publication Analysis

Top Keywords

microwave absorption
20
n-doped graphene/carbon
8
microwave
8
loss magnetic
8
magnetic loss
8
conductive networks
8
absorption performance
8
absorption
6
loss
5
tailoring conductive
4

Similar Publications

Metal-organic framework (MOF) derived porous FeO/C powders were applied for absorption of microwaves in the frequency range of 1-18 GHz. The effects of the polyvinylpyrrolidone (PVP) additive on the synthesis of MIL101-(Fe) precursor were studied by various characterization methods. By adding PVP, the impure hematite phase (α-FeO) with magnetite phase (FeO) was disappeared and the particular morphology was transformed to the porous rod-like, leading to the increase of specific surface area from 150 to 282 m/g.

View Article and Find Full Text PDF

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses.

View Article and Find Full Text PDF

With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses an ultra-wideband nanoscale metamaterial absorber designed for applications in the visible spectrum, emphasizing its ultrathin and flexible characteristics.
  • The study highlights the effective absorption capabilities of the structure, achieving an impressive maximum absorption rate of 86.66%, with a peak absorption of 99.88% for a single unit cell.
  • The research utilizes numerical analysis methods, like the Finite Difference Time Domain (FDTD), to optimize dispersion and Fano resonance properties, making the metamaterial a promising candidate for applications such as solar energy harvesting and biochemical sensing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!