A bispecific nanobody targeting the dimerization interface of epidermal growth factor receptor: Evidence for tumor suppressive actions in vitro and in vivo.

Biochem Biophys Res Commun

Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:

Published: April 2021

Targeting the dimer interface for the epidermal growth factor receptor (EGFR) that is highly conserved in the structure and directly involved in dimerization may solve the resistance problem that plagues anti-EGFR therapy. Heavy chain single domain antibodies have promising prospects as therapeutic antibodies. A bispecific nanobody was constructed based on previously screened humanized nanobodies that target the β-loop at the EGFR dimer interface, an anti-FcγRIIIa (CD16) of natural killer cells (NK) nanobodies and anti-human serum albumin (HSA) nanobodies. The target gene was effectively expressed and secreted while controlled by promoter GAP in Pichia pastoris X33, and the expressed product was purified with a cation exchange and nickel chelation chromatography. The bispecific nanobody specifically bound to the surfaces of EGFR-overexpressed human epidermal carcinoma A431 cells and effectively inhibited tumor cell growth both in vitro and in vivo. In the A431 cell nude mouse xenograft model, the growth inhibition effect from the bispecific nanobody was significantly increased with the assistance of peripheral blood mononuclear cells (PBMCs), which was consistent with the results obtained in vitro, suggesting that there was an antibody-dependent cell-mediated cytotoxicity (ADCC) effect. In addition, the intraperitoneal administration of bispecific nanobodies effectively reached tumor tissues in the shoulder dorsal region, but in significantly less distributed quantities than EGFR Dimer Nb77. To conclude, a bispecific nanobody targeting the EGFR dimer interface with ADCC effect was successfully constructed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.02.059DOI Listing

Publication Analysis

Top Keywords

bispecific nanobody
20
dimer interface
12
egfr dimer
12
nanobody targeting
8
interface epidermal
8
epidermal growth
8
growth factor
8
factor receptor
8
in vitro in vivo
8
nanobodies target
8

Similar Publications

Peptidisc-Assisted Hydrophobic Clustering Toward the Production of Multimeric and Multispecific Nanobody Proteins.

Biochemistry

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

Multimerization is a powerful engineering strategy for enhancing protein structural stability, diversity and functional performance. Typical methods for clustering proteins include tandem linking, fusion to self-assembly domains and cross-linking. Here we present a novel approach that leverages the Peptidisc membrane mimetic to stabilize hydrophobic-driven protein clusters.

View Article and Find Full Text PDF

Genetically engineered integrated aflatoxin B and deoxynivalenol bispecific nanobody as surrogate antigens for constructed time-resolved immunoassay dual detection methods.

Biosens Bioelectron

January 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China. Electronic address:

There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B (AFB) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins.

View Article and Find Full Text PDF

Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood.

View Article and Find Full Text PDF

Expression-Dependent Tumor Pretargeting via Engineered Avidity.

Mol Pharm

January 2025

Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether.

View Article and Find Full Text PDF

Non-small cell lung cancers (NSCLC) frequently acquire resistance to tyrosine kinase inhibitors (TKI) due to epidermal growth factor receptor (EGFR) mutation or activation of the bypass pathway involving mesenchymal-epithelial transition factor (Met). To address this challenge, a bispecific nanobody-aptamer chimera is designed to target mutated EGFR and Met simultaneously to block their cross-talk in NSCLC. The EGFR-Met chimera is cost-effectively engineered using microbial transglutaminase and click chemistry strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!