Objective: Rapid-Eye-Movement (REM) sleep behaviour disorder (RBD) is an early predictor of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This study investigated the use of a minimal set of sensors to achieve effective screening for RBD in the population, integrating automated sleep staging (three state) followed by RBD detection without the need for cumbersome electroencephalogram (EEG) sensors.
Methods: Polysomnography signals from 50 participants with RBD and 50 age-matched healthy controls were used to evaluate this study. Three stage sleep classification was achieved using a random forest classifier and features derived from a combination of cost-effective and easy to use sensors, namely electrocardiogram (ECG), electrooculogram (EOG), and electromyogram (EMG) channels. Subsequently, RBD detection was achieved using established and new metrics derived from ECG and EMG channels.
Results: The EOG and EMG combination provided the optimal minimalist fully-automated performance, achieving 0.57 ± 0.19 kappa (3 stage) for sleep staging and an RBD detection accuracy of 0.90 ± 0.11, (sensitivity and specificity of 0.88 ± 0.13 and 0.92 ± 0.098, respectively). A single ECG sensor achieved three state sleep staging with 0.28 ± 0.06 kappa and RBD detection accuracy of 0.62 ± 0.10.
Conclusions: This study demonstrates the feasibility of using signals from a single EOG and EMG sensor to detect RBD using fully-automated techniques.
Significance: This study proposes a cost-effective, practical, and simple RBD identification support tool using only two sensors (EMG and EOG); ideal for screening purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289737 | PMC |
http://dx.doi.org/10.1016/j.clinph.2021.01.009 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea.
Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).
Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.
Vet Res Forum
December 2024
Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.
Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
Background And Purpose: Peak width of skeletonized mean diffusivity (PSMD) is a novel marker of white matter damage, which may be related to small vessel disease. This study aimed to investigate the presence of white matter damage in patients with isolated rapid eye movement sleep behavior disorder (RBD) using PSMD.
Methods: We enrolled patients with newly diagnosed isolated RBD confirmed by polysomnography and age- and sex-matched healthy controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!