Spiking neural networks (SNNs) are regarded as effective models for processing spatio-temporal information. However, their inherent complexity of temporal coding makes it an arduous task to put forward an effective supervised learning algorithm, which still puzzles researchers in this area. In this paper, we propose a Recursive Least Squares-Based Learning Rule (RLSBLR) for SNN to generate the desired spatio-temporal spike train. During the learning process of our method, the weight update is driven by the cost function defined by the difference between the membrane potential and the firing threshold. The amount of weight modification depends not only on the impact of the current error function, but also on the previous error functions which are evaluated by current weights. In order to improve the learning performance, we integrate a modified synaptic delay learning to the proposed RLSBLR. We conduct experiments in different settings, such as spiking lengths, number of inputs, firing rates, noises and learning parameters, to thoroughly investigate the performance of this learning algorithm. The proposed RLSBLR is compared with competitive algorithms of Perceptron-Based Spiking Neuron Learning Rule (PBSNLR) and Remote Supervised Method (ReSuMe). Experimental results demonstrate that the proposed RLSBLR can achieve higher learning accuracy, higher efficiency and better robustness against different types of noise. In addition, we apply the proposed RLSBLR to open source database TIDIGITS, and the results show that our algorithm has a good practical application performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2021.01.016 | DOI Listing |
Neural Netw
June 2021
China Coal Research Institute, Beijing 100013, PR China.
Spiking neural networks (SNNs) are regarded as effective models for processing spatio-temporal information. However, their inherent complexity of temporal coding makes it an arduous task to put forward an effective supervised learning algorithm, which still puzzles researchers in this area. In this paper, we propose a Recursive Least Squares-Based Learning Rule (RLSBLR) for SNN to generate the desired spatio-temporal spike train.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!