His in the pore-lining α4 of the Bacillus thuringiensis Cry4Aa δ-endotoxin is crucial for structural arrangements of the α4-α5 transmembrane hairpin and hence biotoxicity.

Biochim Biophys Acta Proteins Proteom

Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai 50230, Thailand; Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand. Electronic address:

Published: June 2021

One proposed toxic mechanism of Bacillus thuringiensis Cry δ-endotoxins involves pore formation in target membranes by the α4-α5 transmembrane hairpin constituting their pore-forming domain. Here, nine selected charged and uncharged polar residues in the pore-lining α4 of the Cry4Aa mosquito-active toxin were substituted with Ala. All mutant toxins, i.e., D169A, R171A, Q173A, H178A, Y179A, H180A, Q182A, N183A and E187A, were over-expressed in Escherichia coli as 130-kDa protoxin inclusions at levels comparable to the wild-type toxin. Bioassays against Aedes aegypti larvae revealed that only H178A and H180A mutants displayed a drastic reduction in biotoxicity, albeit almost complete insolubility observed for H178A, but not for H180A inclusions. Further mutagenic analysis showed that replacements of His with charged (Arg, Lys, Asp, Glu), small uncharged polar (Ser, Cys) or small non-polar (Gly, Val) residues severely impaired the biotoxicity, unlike substitutions with relatively large uncharged (Asn, Gln, Leu) or aromatic (Phe, Tyr, Trp) residues. Similar to the trypsin-activated wild-type toxin, both bio-active and -inactive H180 mutants were still capable of releasing entrapped calcein from lipid vesicles and producing cation-selective channels with ~130-pS maximum conductance. Analysis of the Cry4Aa structure revealed the existence of a hydrophobic cavity near the critical His side-chain. Analysis of simulated structures revealed that His-to-smaller residue conversions create a gap disrupting such cavity's hydrophobicity and hence structural arrangements of the α4-α5 hairpin. Altogether, our data disclose a critical involvement in Cry4Aa-biotoxicity of His exclusively present in the lumen-facing α4 for providing proper environment for the α4-α5 hairpin prior to membrane-inserted pore formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2021.140634DOI Listing

Publication Analysis

Top Keywords

pore-lining α4
8
bacillus thuringiensis
8
structural arrangements
8
arrangements α4-α5
8
α4-α5 transmembrane
8
transmembrane hairpin
8
pore formation
8
uncharged polar
8
wild-type toxin
8
h178a h180a
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!