Tuberculosis (TB) is a complex infectious bacterial disease, which has evolved with highly successful mechanisms to interfere with host defenses and existing classes of antibiotics to resist eradication. The single obtainable TB vaccine, Bacille Calmette-Guerin (BCG) has failed to provide regular defense for respiratory TB in adults. In this study, a bioinformatics and immunoinformatics approach was applied on Mycobacterium tuberculosis (Mtb) H37Rv proteomes to discover the potential subunit vaccine candidates that elicit both tuberculosis-specific T-cells and B-cell immune response. A total of 4049 proteins of MtbH37RvMtbH37Rv were retrieved and subjected to in silico sequence-based analysis. Finally, five (P9WL69 (Rv2599), P9WIG1 (Rv0747), P9WLQ1 (Rv1987), O53608 (Rv0063), O06624 (Rv1566c)) novel putative proteins were selected. Among the five putative antigenic vaccine candidates, P9WL69 protein was selected for the ex-vivo validation study. The P9WL69 protein encoding gene was amplified and cloned on pET21b vector. The success of the recombinant clone (pET21b-RV2599) was confirmed by colony PCR, insert release test and sequencing. Furthermore, the identified epitopes of the P9WL69 protein were considered for in silico docking and molecular dynamics simulation study using Toll-like Receptors (TLRs) (TLR-2, TLR-4, TLR-9), Mannose receptor, and Myeloid differentiation 88 (MYD88) to understand their binding affinity towards the development of immunogenic vaccines against tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2021.105870DOI Listing

Publication Analysis

Top Keywords

vaccine candidates
12
p9wl69 protein
12
ex-vivo validation
8
validation study
8
antigenic vaccine
8
computational discovery
4
discovery ex-vivo
4
study
4
study novel
4
novel antigenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!