DNMTs Play an Important Role in Maintaining the Pluripotency of Leukemia Inhibitory Factor-Dependent Embryonic Stem Cells.

Stem Cell Reports

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China. Electronic address:

Published: March 2021

Naive pluripotency can be maintained in medium with two inhibitors plus leukemia inhibitory factor (2i/LIF) supplementation, which primarily affects canonical WNT, FGF/ERK, and JAK/STAT3 signaling. However, whether one of these three supplements alone is sufficient to maintain naive self-renewal remains unclear. Here we show that LIF alone in medium is sufficient for adaptation of 2i/L-ESCs to embryonic stem cells (ESCs) in a hypermethylated state (L-ESCs). Global transcriptomic analysis shows that L-ESCs are close to 2i/L-ESCs and in a stable state between naive and primed pluripotency. Notably, our results demonstrate that DNA methyltransferases (DNMTs) play an important role in LIF-dependent mouse ESC adaptation and self-renewal. LIF-dependent ESC adaptation efficiency is significantly increased in serum treatment and reduced in Dnmt3a or Dnmt3l knockout ESCs. Importantly, unlike epiblast stem cells, L-ESCs contribute to somatic tissues and germ cells in chimeras. L-ESCs cultured under such simple conditions as in this study would provide a more conducive platform to clarify the molecular mechanism of ESCs in in vitro culture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940253PMC
http://dx.doi.org/10.1016/j.stemcr.2021.01.017DOI Listing

Publication Analysis

Top Keywords

stem cells
12
dnmts play
8
play role
8
leukemia inhibitory
8
embryonic stem
8
esc adaptation
8
role maintaining
4
maintaining pluripotency
4
pluripotency leukemia
4
inhibitory factor-dependent
4

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Perianal melanosis.

Br J Dermatol

January 2025

Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!