Bivalve shells are increasingly used as archives for high-resolution paleoclimate analyses. However, there is still an urgent need for quantitative temperature proxies that work without knowledge of the water chemistry-as is required for δ18O-based paleothermometry-and can better withstand diagenetic overprint. Recently, microstructural properties have been identified as a potential candidate fulfilling these requirements. So far, only few different microstructure categories (nacreous, prismatic and crossed-lamellar) of some short-lived species have been studied in detail, and in all such studies, the size and/or shape of individual biomineral units was found to increase with water temperature. Here, we explore whether the same applies to properties of the crossed-acicular microstructure in the hinge plate of Arctica islandica, the microstructurally most uniform shell portion in this species. In order to focus solely on the effect of temperature on microstructural properties, this study uses bivalves that grew their shells under controlled temperature conditions (1, 3, 6, 9, 12 and 15°C) in the laboratory. With increasing temperature, the size of the largest individual biomineral units and the relative proportion of shell occupied by the crystalline phase increased. The size of the largest pores, a specific microstructural feature of A. islandica, whose potential role in biomineralization is discussed here, increased exponentially with culturing temperature. This study employs scanning electron microscopy in combination with automated image processing software, including an innovative machine learning-based image segmentation method. The new method greatly facilitates the recognition of microstructural entities and enables a faster and more reliable microstructural analysis than previously used techniques. Results of this study establish the new microstructural temperature proxy in the crossed-acicular microstructures of A. islandica and point to an overarching control mechanism of temperature on the micrometer-scale architecture of bivalve shells across species boundaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909638PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247968PLOS

Publication Analysis

Top Keywords

arctica islandica
8
bivalve shells
8
temperature
8
microstructural properties
8
individual biomineral
8
biomineral units
8
size largest
8
microstructural
6
temperature-induced microstructural
4
microstructural changes
4

Similar Publications

Rationale: Stable carbon and oxygen isotope data of biogenic and abiogenic aragonite are of fundamental relevance in paleoclimate research. Wet-chemical analysis of such materials requires well-homogenized, fine-grained powder. In the present study, the effect of different grinding/milling methods on sample homogeneity and the potential risk of unintentional calcite formation and isotope shift were evaluated.

View Article and Find Full Text PDF

Iceland's exposure to major ocean current pathways of the central North Atlantic makes it a useful location for developing long-term proxy records of past marine climate. Such records provide more detailed understanding of the full range of past variability which is necessary to improve predictions of future changes. We constructed a 225-year (1791-2015 CE) master shell growth chronology from 29 shells of collected at 100 m water depth in southwest Iceland (Faxaflói).

View Article and Find Full Text PDF

Bottom-trawling signals lost in sediment: A combined biogeochemical and modeling approach to early diagenesis in a perturbed coastal area of the southern Baltic Sea.

Sci Total Environ

January 2024

Department of Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119 Rostock, Germany; Marine Geochemistry, University of Greifswald, 17489 Greifswald, Germany; Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany.

Trawl-fishing is broadly considered to be one of the most destructive anthropogenic activities toward benthic ecosystems. In this study, we examine the effects of bottom-contact fishing by otter trawls on the geochemistry and macrofauna in sandy silt sediment in an area of the Baltic Sea where clear spatial patterns in trawling activity were previously identified by acoustic mapping. We calibrated an early diagenetic model to biogeochemical data from various coring locations.

View Article and Find Full Text PDF

Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution.

Genome Biol Evol

November 2023

Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy.

Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far).

View Article and Find Full Text PDF

The Baltic Sea serves as a model region to study processes leading to oxygen depletion. Reconstructing past low-oxygen occurrences, specifically hypoxia, is crucial to understand current ecological disturbances and developing future mitigation strategies. The history of dissolved oxygen (DO) concentration in some Baltic Sea basins has been investigated in previous studies, but temporally well-constrained, inter-annual and better resolved DO reconstructions are still scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!