From Many-Body Oscillations to Thermalization in an Isolated Spinor Gas.

Phys Rev Lett

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France.

Published: February 2021

AI Article Synopsis

  • The study explores how many-body systems, specifically spin-1 atoms in a shared spatial mode, exhibit diverse behaviors ranging from reversible dynamics to rapid thermalization.
  • When analyzed through the Bogoliubov framework, the system shows undamped oscillations due to its linear energy spectrum.
  • Conversely, once the system breaks integrability, chaotic dynamics arise, resulting in thermalization, consistent with modern theoretical expectations like the eigenstate thermalization hypothesis.

Article Abstract

The dynamics of a many-body system can take many forms, from a purely reversible evolution to fast thermalization. Here we show experimentally and numerically that an assembly of spin-1 atoms all in the same spatial mode allows one to explore this wide variety of behaviors. When the system can be described by a Bogoliubov analysis, the relevant energy spectrum is linear and leads to undamped oscillations of many-body observables. Outside this regime, the nonlinearity of the spectrum leads to irreversibility, characterized by a universal behavior. When the integrability of the Hamiltonian is broken, a chaotic dynamics emerges and leads to thermalization, in agreement with the eigenstate thermalization hypothesis paradigm.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.063401DOI Listing

Publication Analysis

Top Keywords

many-body oscillations
4
thermalization
4
oscillations thermalization
4
thermalization isolated
4
isolated spinor
4
spinor gas
4
gas dynamics
4
dynamics many-body
4
many-body system
4
system forms
4

Similar Publications

Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs.

Natl Sci Rev

December 2024

State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound.

View Article and Find Full Text PDF

Parametric tuning of quantum phase transitions in ultracold reactions.

Nat Commun

November 2024

Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.

Advances in atomic physics have led to the possibility of a coherent transformation between ultracold atoms and molecules including between completely bosonic condensates. Such transformations are enabled by the magneto-association of atoms at a Feshbach resonance which results in a passage through a quantum critical point. In this study, we show that the presence of generic interaction between the constituent atoms and molecules can fundamentally alter the nature of the critical point, change the yield of the reaction and the order of the consequent phase transition.

View Article and Find Full Text PDF

The many-body expansion is a fragment-based approach to large-scale quantum chemistry that partitions a single monolithic calculation into manageable subsystems. This technique is increasingly being used as a basis for fitting classical force fields to electronic structure data, especially for water and aqueous ions, and for machine learning. Here, we show that the many-body expansion based on semilocal density functional theory affords wild oscillations and runaway error accumulation for ion-water interactions, typified by F(HO) with ≳ 15.

View Article and Find Full Text PDF

LDOS of electron pair and the role of the Pauli exclusion principle.

J Phys Condens Matter

November 2024

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-688 Warsaw, Poland.

The local density of states (LDOS) for a pair of non-relativistic electrons, influenced by repulsive Coulomb forces, is expressed in term of one-dimensional integrals over Whittaker functions. The computation of the electron pair's LDOS relies on a two-particle Green's function (GF), a generalization of the one-particle GF applicable to a charged particle in an attractive Coulomb potential. By incorporating electron spins and considering the Pauli exclusion principle, the resulting LDOS consists of two components: one originating from an exchange-even two-particle GF and the other from an exchange-odd two-particle GF.

View Article and Find Full Text PDF

We present computational results of many-body dispersion (MBD) interactions for 40 pairs of molecular and atomic species: hydrocarbons, silanes, corresponding fluorinated derivatives, pairs which have multiple H---H contacts between the molecules, as well as pairs having π-π interactions, and pairs of noble gases. The calculations reveal that the MBD stabilization energy () obeys a global relationship, which is . It is proportional to the product of the masses of the two molecules () and inversely proportional to the corresponding distances between the molecular centers-of-mass () or the H---H distances of the atoms mediating the interactions of the two molecules ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!