Profound understanding of the luminescence mechanism and structure-property relationship is vital for Cu(I) thermally activated delayed fluorescence (TADF) emitters. Herein, we theoretically simulated luminescent behavior in both solution and solid phases for two Cu(I) complexes and found the following: (i) The strengthened spin-orbit coupling (SOC) effect by more d orbital contributions and well-restricted structural distortion via remarkable intramolecular interaction in [Cu(dmp)(POP)] enable the emission at room temperature to be a mixture of direct phosphorescence (10%) and TADF (90%). (ii) Benefiting from enhanced steric hindrance and the electron-donating ability of the paracyclophane group, the narrowed S-T energy separation (Δ) in [Cu(dmp)(phanephos)] accelerates the reverse intersystem crossing, promoting the TADF rate (1.88 × 10 s) and intensity ratio (98.3%). These results indicate that the small Δ is superior for reducing the lifetime and that the strong SOC stimulates the phosphorescence to compete with TADF, which are both conducive to avoiding collision-induced exciton quenching and reducing the roll-off in devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c00119DOI Listing

Publication Analysis

Top Keywords

delayed fluorescence
8
intensity ratio
8
cui complexes
8
solution solid
8
solid phases
8
impact delayed
4
fluorescence rate
4
rate lifetime
4
lifetime intensity
4
ratio tetrahedral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!