Cooperativity and Anticooperativity in Ion-Water Interactions: Implications for the Aqueous Solvation of Ions.

Chemphyschem

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., 04510, CDMX, México.

Published: June 2021

Non-additive effects in hydrogen bonds (HB) take place as a consequence of electronic charge transfers. Therefore, it is natural to expect cooperativity and anticooperativity in ion-water interactions. Nevertheless, investigations on this matter are scarce. This paper addresses the interactions of (i) the cations Li , Na , K , Be , Mg , and Ca together with (ii) the anions F , Cl , Br , NO and SO with water clusters (H O) , n=1-8, and the effects of these ions on the HBs within the complete molecular adducts. We used quantum chemical topology tools, specifically the quantum theory of atoms in molecules and the interacting quantum atoms energy partition to investigate non-additive effects among the interactions studied herein. Our results show a decrease on the interaction energy between ions and the first neighbouring water molecules with an increment of the coordination number. We also found strong cooperative effects in the interplay between HBs and ion-dipole interactions within the studied systems. Such cooperativity affects considerably the interactions among ions with their first and second solvation shells in aqueous environments. Overall, we believe this article provides valuable information about how ion-dipole contacts interact with each other and how they relate to other interactions, such as HBs, in the framework of non-additive effects in aqueous media.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202000981DOI Listing

Publication Analysis

Top Keywords

non-additive effects
12
cooperativity anticooperativity
8
anticooperativity ion-water
8
ion-water interactions
8
interactions studied
8
interactions
7
effects
5
interactions implications
4
implications aqueous
4
aqueous solvation
4

Similar Publications

The readiness of leaf-litter to burn in the presence of fire differs greatly between species. Thus, forests composed of different species vary in their susceptibility to fire. Fire susceptibility of forests may also differ from the arithmetic means of flammability of their component species, i.

View Article and Find Full Text PDF

Litter size traits of sows are crucial for the economic benefits of the pig industry. Three phenotypic traits of 1,206 Large White (LW) pigs, that is, the total number born (TNB), number born alive (NBA), and number of healthy piglets (NHP), were recorded. We evaluated a series of genomic best linear unbiased prediction (GBLUP) models that sequentially added additive effects (model A), dominance effects (model A+D), and epistatic effects (model A+D+AA, model A+D+AA+AD, and model A+D+AA+AD+DD) using chip data and imputed whole-genome sequencing (WGS) data to estimate genetic parameters and predictive accuracy.

View Article and Find Full Text PDF

Late wilt disease caused by the fungal pathogen represents a major threat to maize cultivation in the Mediterranean region. Developing resistant hybrids and high-yielding offers a cost-effective and environmentally sustainable solution to mitigate yield losses. Therefore, this study evaluated genetic variation, combining abilities, and inheritance patterns in newly developed twenty-seven maize hybrids for grain yield and resistance to late wilt disease under artificial inoculation across two growing seasons.

View Article and Find Full Text PDF

In maize breeding, enhancing yield through genetic insights is crucial yet challenged by the complex interplay of agronomic traits. This study utilized a diallel mating design involving nine advanced early maize lines to dissect the genetic architecture underlying key agronomic traits and their impact on yield. Over two consecutive years (2018-2019 and 2019-2020), 36 hybrids derived from these lines were grown across two locations, Karaj, Alborz, Iran and Kermanshah (2019-2020), Iran, in a randomized complete block design with three replications.

View Article and Find Full Text PDF

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!